000095461 001__ 95461
000095461 005__ 20210902121608.0
000095461 0247_ $$2doi$$a10.1016/j.jhazmat.2019.121279
000095461 0248_ $$2sideral$$a114704
000095461 037__ $$aART-2020-114704
000095461 041__ $$aeng
000095461 100__ $$0(orcid)0000-0003-2660-3726$$aLafuente, Marta$$uUniversidad de Zaragoza
000095461 245__ $$aGas phase detection of chemical warfare agents CWAs with portable Raman
000095461 260__ $$c2020
000095461 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095461 5203_ $$aThe development of SERS substrates for chemical detection of specific analytes requires appropriate selection of plasmonic metal and the surface where it is deposited. Here we deposited Ag nanoplates on three substrates: i) conventional SiO2/Si wafer, ii) stainless steel mesh and iii) graphite foils. The SERS enhancement of the signal was studied for Rhodamine 6 G (R6 G) as common liquid phase probe molecule. We conducted a comprehensive study with ¿ = 532, 633 and 785 nm on all the substrates. The best substrate was investigated, at the optimum laser 785 nm, for gas phase detection of dimethyl methyl phosphonate (DMMP), simulant of the G-series nerve agents, at a concentration of 2.5 ppmV (14 mg/m3). The spectral fingerprint was clearly observed; with variations on the relative intensities of SERS Raman bands compared to bulk DMMP in liquid phase reflects the DMMP-Ag interactions. These interactions were simulated by Density Functional Theory (DFT) calculations and the simulated spectra matched with the experimental one. Finally, we were detected the characteristics DMMP fingerprint with hand-held portable equipment. These results open the way for the application of SERS technique on real scenarios where robust, light-weight, miniaturized and simple to use and cost-effective tools are required by first responders.
000095461 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2013-49068-C2-1-R$$9info:eu-repo/grantAgreement/ES/UZ-DGA/T57-17R-P
000095461 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000095461 590__ $$a10.588$$b2020
000095461 591__ $$aENVIRONMENTAL SCIENCES$$b10 / 273 = 0.037$$c2020$$dQ1$$eT1
000095461 591__ $$aENGINEERING, ENVIRONMENTAL$$b4 / 53 = 0.075$$c2020$$dQ1$$eT1
000095461 592__ $$a2.033$$b2020
000095461 593__ $$aEnvironmental Chemistry$$c2020$$dQ1
000095461 593__ $$aEnvironmental Engineering$$c2020$$dQ1
000095461 593__ $$aWaste Management and Disposal$$c2020$$dQ1
000095461 593__ $$aPollution$$c2020$$dQ1
000095461 593__ $$aHealth, Toxicology and Mutagenesis$$c2020$$dQ1
000095461 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000095461 700__ $$0(orcid)0000-0003-0685-6822$$aSanz, Diego
000095461 700__ $$0(orcid)0000-0002-4931-1358$$aUrbiztondo, Miguel
000095461 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaría, Jesús$$uUniversidad de Zaragoza
000095461 700__ $$0(orcid)0000-0001-9897-6527$$aPina, María Pilar$$uUniversidad de Zaragoza
000095461 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000095461 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000095461 773__ $$g384 (2020), 121279  [8 pp.]$$pJ. hazard. mater.$$tJournal of Hazardous Materials$$x0304-3894
000095461 85641 $$uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072972065&doi=10.1016%2fj.jhazmat.2019.121279&partnerID=40&md5=07a003b199fbcc90c6ddf349c3f080c5$$zTexto completo de la revista
000095461 8564_ $$s1926034$$uhttps://zaguan.unizar.es/record/95461/files/texto_completo.pdf$$yPostprint
000095461 8564_ $$s367253$$uhttps://zaguan.unizar.es/record/95461/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000095461 909CO $$ooai:zaguan.unizar.es:95461$$particulos$$pdriver
000095461 951__ $$a2021-09-02-08:39:16
000095461 980__ $$aARTICLE