000087025 001__ 87025
000087025 005__ 20200716101606.0
000087025 0247_ $$2doi$$a10.3390/ma12233858
000087025 0248_ $$2sideral$$a115364
000087025 037__ $$aART-2019-115364
000087025 041__ $$aeng
000087025 100__ $$aSuarez, Hugo
000087025 245__ $$aSilver-Copper Oxide Heteronanostructures for the Plasmonic-Enhanced Photocatalytic Oxidation of n-Hexane in the Visible-NIR Range
000087025 260__ $$c2019
000087025 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087025 5203_ $$aVolatile organic compounds (VOCs) are recognized as hazardous contributors to air pollution, precursors of multiple secondary byproducts, troposphere aerosols, and recognized contributors to respiratory and cancer-related issues in highly populated areas. Moreover, VOCs present in indoor environments represent a challenging issue that need to be addressed due to its increasing presence in nowadays society. Catalytic oxidation by noble metals represents the most effective but costly solution. The use of photocatalytic oxidation has become one of the most explored alternatives given the green and sustainable advantages of using solar light or low-consumption light emitting devices. Herein, we have tried to address the shortcomings of the most studied photocatalytic systems based on titania (TiO2) with limited response in the UV-range or alternatively the high recombination rates detected in other transition metal-based oxide systems. We have developed a silver-copper oxide heteronanostructure able to combine the plasmonic-enhanced properties of Ag nanostructures with the visible-light driven photoresponse of CuO nanoarchitectures. The entangled Ag-CuO heteronanostructure exhibits a broad absorption towards the visible-near infrared (NIR) range and achieves total photo-oxidation of n-hexane under irradiation with different light-emitting diodes (LEDs) specific wavelengths at temperatures below 180 °C and outperforming its thermal catalytic response or its silver-free CuO illuminated counterpart.
000087025 536__ $$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 742684-CADENCE$$9info:eu-repo/grantAgreement/EC/H2020/742684/EU/Catalytic Dual-Function Devices Against Cancer/CADENCE$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-77147
000087025 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000087025 590__ $$a3.057$$b2019
000087025 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b132 / 314 = 0.42$$c2019$$dQ2$$eT2
000087025 592__ $$a0.647$$b2019
000087025 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ2
000087025 593__ $$aCondensed Matter Physics$$c2019$$dQ2
000087025 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087025 700__ $$0(orcid)0000-0001-5036-1355$$aRamirez, Adrian
000087025 700__ $$0(orcid)0000-0002-8762-6203$$aBueno-Alejo, Carlos J.
000087025 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.
000087025 773__ $$g12, 23 (2019), 3858 [16 pp.]$$pMATERIALS$$tMaterials$$x1996-1944
000087025 8564_ $$s3493346$$uhttps://zaguan.unizar.es/record/87025/files/texto_completo.pdf$$yVersión publicada
000087025 8564_ $$s105526$$uhttps://zaguan.unizar.es/record/87025/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087025 909CO $$ooai:zaguan.unizar.es:87025$$particulos$$pdriver
000087025 951__ $$a2020-07-16-09:55:10
000087025 980__ $$aARTICLE