000079761 001__ 79761
000079761 005__ 20200716101506.0
000079761 0247_ $$2doi$$a10.1103/PhysRevApplied.11.064025
000079761 0248_ $$2sideral$$a112660
000079761 037__ $$aART-2019-112660
000079761 041__ $$aeng
000079761 100__ $$0(orcid)0000-0002-9043-4691$$aMartinez, M.$$uUniversidad de Zaragoza
000079761 245__ $$aMeasurements and Simulations of Athermal Phonon Transmission from Silicon Absorbers to Aluminum Sensors
000079761 260__ $$c2019
000079761 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079761 5203_ $$aPhonon reflection and transmission at the interfaces plays a fundamental role in cryogenic particle detectors, in which the optimization of the phonon signal at the sensor (in case of phonon-mediated detectors) or the minimization of the heat transmission (when the detection occurs in the sensor itself) is of primary importance to improve sensitivity. Nevertheless, the mechanisms governing the phonon physics at the interfaces are still not completely understood. The two more successful models, the acoustic mismatch model (AMM) and diffuse mismatch model (DMM) are not able to explain all the accumulated experimental data and the measurement of the transmission coefficients between the materials remains a challenge. Here, we use measurements of the athermal phonon flux in aluminum kinetic inductance detectors (KIDs) deposited on silicon substrates following a particle interaction to validate a Monte Carlo (MC) phonon simulation. We apply the Mattis-Bardeen theory to derive the phonon pulse energy and timing from the KID signal and compare the results with the MC for specular AMM and DMM reflection, finding a remarkably good agreement for specular, while diffuse reflection is clearly disfavored. For an aluminum film of 60 nm and a silicon substrate of 380 mu m, we obtain transmission coefficients Si-Al in the range 0.3-0.55 and Si-Teflon in the range 0.1-0.15.
000079761 536__ $$9info:eu-repo/grantAgreement/EC/FP7/335359/EU/Cryogenic wide-Area Light Detectors with Excellent Resolution/CALDER
000079761 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000079761 590__ $$a4.194$$b2019
000079761 591__ $$aPHYSICS, APPLIED$$b32 / 154 = 0.208$$c2019$$dQ1$$eT1
000079761 592__ $$a1.866$$b2019
000079761 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1
000079761 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000079761 700__ $$aCardani, L.
000079761 700__ $$aCasali, N.
000079761 700__ $$aCruciani, A.
000079761 700__ $$aPettinari, G.
000079761 700__ $$aVignati, M.
000079761 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl.
000079761 773__ $$g11, 6 (2019), 064025 [12 pp]$$pPhys. rev. appl.$$tPhysical Review Applied$$x2331-7019
000079761 8564_ $$s1449712$$uhttps://zaguan.unizar.es/record/79761/files/texto_completo.pdf$$yVersión publicada
000079761 8564_ $$s118765$$uhttps://zaguan.unizar.es/record/79761/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000079761 909CO $$ooai:zaguan.unizar.es:79761$$particulos$$pdriver
000079761 951__ $$a2020-07-16-09:16:14
000079761 980__ $$aARTICLE