000078856 001__ 78856
000078856 005__ 20200716101426.0
000078856 0247_ $$2doi$$a10.1371/journal.pone.0213909
000078856 0248_ $$2sideral$$a111218
000078856 037__ $$aART-2019-111218
000078856 041__ $$aeng
000078856 100__ $$aVan Eeckhout, A.
000078856 245__ $$aDepolarizing metrics for plant samples imaging
000078856 260__ $$c2019
000078856 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078856 5203_ $$aOptical methods, as fluorescence microscopy or hyperspectral imaging, are commonly used for plants visualization and characterization. Another powerful collection of optical techniques is the so-called polarimetry, widely used to enhance image contrast in multiple applications. In the botanical applications framework, in spite of some works have already highlighted the depolarizing print that plant structures left on input polarized beams, the potential of polarimetric methods has not been properly exploited. In fact, among the few works dealing with polarization and plants, most of them study light scattered by plants using the Degree of Polarization (DoP) indicator. Other more powerful depolarization metrics are nowadays neglected. In this context, we highlight the potential of different depolarization metrics obtained using the Mueller matrix (MM) measurement: the Depolarization Index and the Indices of Polarimetric Purity. We perform a qualitative and quantitative comparison between DoP- and MM-based images by studying a particular plant, the Hedera maroccana. We show how Mueller-based metrics are generally more suitable in terms of contrast than DoP-based measurements. The potential of polarimetric measurements in the study of plants is highlighted in this work, suggesting they can be applied to the characterization of plants, plant taxonomy, water stress in plants, and other botanical studies.
000078856 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2015-66328-C3-1-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2015-66328-C3-3-R
000078856 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000078856 590__ $$a2.74$$b2019
000078856 592__ $$a1.023$$b2019
000078856 591__ $$aMULTIDISCIPLINARY SCIENCES$$b27 / 71 = 0.38$$c2019$$dQ2$$eT2
000078856 593__ $$aMultidisciplinary$$c2019$$dQ1
000078856 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000078856 700__ $$aGarcia-Caurel, E.
000078856 700__ $$aGarnatje, T.
000078856 700__ $$aDurfort, M.
000078856 700__ $$aEscalera, J.C.
000078856 700__ $$aVidal, J.
000078856 700__ $$0(orcid)0000-0003-1740-2244$$aGil, J.J.$$uUniversidad de Zaragoza
000078856 700__ $$aCampos, J.
000078856 700__ $$aLizana, A.
000078856 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000078856 773__ $$g14, 3 (2019), e0213909[19 pp]$$pPLoS One$$tPLoS ONE$$x1932-6203
000078856 8564_ $$s1273564$$uhttps://zaguan.unizar.es/record/78856/files/texto_completo.pdf$$yVersión publicada
000078856 8564_ $$s101270$$uhttps://zaguan.unizar.es/record/78856/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000078856 909CO $$ooai:zaguan.unizar.es:78856$$particulos$$pdriver
000078856 951__ $$a2020-07-16-08:45:09
000078856 980__ $$aARTICLE