
Appendix A

General Overview of the n-Body Problem

A.1 Statement of the n-Body Problem and First Integrals

In this Appendix some fundamental concepts and results concerning the so-called n-body problem are
presented. Most content of this Section is based on a part of Chapter III of the lecture notes “Curso de
Mecánica Celeste”, [7].

The n-body problem is the problem which considers n bodies (n ≥ 2) moving in R3 under the
influence of their mutual interactions. For the purposes of this Undergraduate Dissertation, the following
general hypotheses will be assumed:

• The bodies of the system under consideration will be idealized as point particles P1, . . . , Pn, with
respective masses m1, . . . ,mn.

• A Cartesian reference frame is fixed in an Euclidean space R3, with its origin O at the center of
mass (or barycenter) of the system, and a certain time parameter t (absolute time of the Newtonian
Mechanics) is chosen. A spatial reference frame with its origin at the center of mass of the system
is called a barycentric reference frame, or barycentric coordinate system. With respect to such a
space and time reference frame, the instantaneous positions of the points P1, . . . , Pn along time
are located by means of the respective vectors

−−→
OP1 = r1(t), . . . ,

−−→
OPn = rn(t), whose respective

norms ‖r1(t)‖, . . . , ‖rn(t)‖ represent their instantaneous distances from the origin of the spatial
reference frame.

• The mutual interactions between two points Pi and Pk will be supposed to be a central force. The
direction of that force is given by the line segment bounded by these two points, and its magnitude
is given by mi mk | f (‖rik‖)|, with ‖rik‖ the mutual distance between Pi and Pk.

• If we observe the vector rik = rk − ri, it is easy to realize that the function f (‖rik‖) is related to the
force that the body Pk exerts on the body Pi. The sign of this function is positive if we are dealing
with a repulsive force, and negative if we consider an attractive force.

Under these general hypotheses, the vector differential equation of motion of the body Pi is given
by

mi r̈i =

n∑
k=1

mi mk φ(‖rik‖) rik, i = 1, . . . , n, (A.1.1)

where φ(r) = f (r)/r, and the dot notation is used to represent derivatives with respect to t.

From now on, we will consider only the case f (r) = rλ, with λ ∈ R. The case f (r) = G r−2, where
G is the universal gravitational constant, corresponds to the Newton’s gravitational force. Under these
conditions, the equations (A.1.1) become

mi r̈i =

n∑
k=1

Gmi mk
rik

‖rik‖
2 , i = 1, . . . , n, (A.1.2)
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and govern the so-called gravitational n-body problem.
Both (A.1.1) and (A.1.2) are systems of n vector second-order ordinary differential equations, and

give rise to respective differential systems of order 6 n. To solve them, we can think about different ways
of addressing the question. We can search for 6 n functionally independent first integrals, which allow
us to solve the problem replacing variables; but for n ≥ 3 it is not possible, since we cannot find the
number of first integrals that we need. For this reason, the study of certain particular solutions allowing
one to obtain some additional knowledge about the behaviour of the system is a useful approach.

Definition A.1. The kinetic energy T = T (ṙ1, . . . , ṙn), the force function U = U (r1, . . . , rn) and the
moment of inertia J = J (r1, . . . , rn) of the system are the scalar functions

T =
1
2

n∑
i=1

mi (ṙi · ṙi) , U = −
∑

1≤i<k≤n

mi mk

∫
f (‖rik‖) d‖rik‖ , J =

n∑
i=1

mi (ri · ri) . (A.1.3)

The potential V from which the force is derived is defined as V = −U.

Remark. For the case f (r) = rλ, the preceding definition of U reads

U = −
∑

1≤i<k≤n

mi mk
‖rik‖

λ+1

λ + 1
. (A.1.4)

Proposition A.1. The equations (A.1.1), with U given by (A.1.4), can also be rewritten as

mi r̈i = ∇riU, where ∇ri U =
∑

k

mi mk ‖rik‖
λ−1 rik, i = 1, . . . , n. (A.1.5)

Proposition A.2. The following equality holds:

ri · ∇ri U = (λ + 1) U. (A.1.6)

Proof. Since U is a homogeneous function of degree λ + 1, by virtue of Euler’s theorem, Equation
(B.3.2), Appendix B, the equality holds. �

Proposition A.3. J satisfies the Lagrange-Jacobi identity, namely

J̈ = 4T + 2 (λ + 1)U. (A.1.7)

Proof. Differentiating the moment of inertial J from (A.1.3) with respect to the time t,

J̇ = 2
n∑

i=1

mi ri · ṙi, J̈ = 2
n∑

i=1

mi ṙ2
i + 2

n∑
i=1

ri · mi r̈i,

where, replacing T from (A.1.3) and using (A.1.5), we obtain

J̈ = 4 T + 2
n∑

i=1

ri · ∇ri U.

Applying Proposition A.2 leads to
J̈ = 4 T + 2 (λ + 1) U.

�

Proposition A.4. The moment of inertia J in terms of the mutual distances (Cid [7, Ch. III, p. III-7],
Wintner [14, Ch. V, § 322bis, p. 243], Boccaletti and Pucacco [6, Ch. 3, § 3.3, Eq. (3.38), p. 193])
reads

J = M−1
∑

1,i<k,n

mi mk ‖rik‖
2, where M =

n∑
i=1

mi. (A.1.8)
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Proposition A.5. The center of mass of an n-body system of masses m1, . . . ,mn moves on a straight line
with constant velocity.

Proof. Denote rcm =
(∑

i mi ri
)
/
(∑

i mi
)

the position vector of the center of mass. We want to prove that
ṙcm = a, and rcm = at + b, with a, b, constant vectors. Denoting aik = mi mk φ(|rik|) in (A.1.1), adding
up these equations over i = 1, . . . , n, and applying Proposition B.5 (Appendix B), we have∑

i

mi r̈i =
∑

i

∑
k

mi mk φ(‖rik‖) rik =
∑

i

∑
k

aik rik = 0.

Then,
∑

i mi r̈i = 0. Integrating we get
∑

i mi ṙi = a, and
∑

i mi ri = at + b, with a, b arbitrary constant
vectors. In particular, in a barycentric reference system these constants are zero. �

Definition A.2. The angular momentum G of an n-body system is the vector

G =

n∑
i=1

mi ri × ṙi. (A.1.9)

Proposition A.6. The angular momentum G of an n-body system is a constant vector.

Proof. Forming the cross product of each equation from (A.1.1) with the respective vector ri, adding
up over i = 1, . . . , n, and using Proposition B.5 (Appendix B),∑

i

mi r̈i × ri =
∑

i

∑
k

mi mk φ(‖rik‖) rik × ri =
∑

i

∑
k

aikrik × ri =
∑

i

∑
k

aikrk × ri = 0.

Then,
∑

i mi r̈i × ri = 0, and, by virtue of the property d(ri × ṙi)/d t = ri × r̈i, we can integrate the last
equality obtaining the result. �

Definition A.3. The invariable plane of the n-body problem is the plane passing through the center of
mass of the system and perpendicular to its angular momentum vector. In other words, it is the set of
points whose position vectors r satisfy the condition G · r = 0.

Definition A.4. The total energy E of the system is the scalar function E = T − U.

Proposition A.7. The total energy of the n-body problem is constant.

Proof. To prove it, differentiating U with respect to t and using (A.1.5), we obtain the following relation

d U
d t

= ∇ri U · ṙi =

n∑
i=1

mi r̈i · ṙi =
d T
d t

=⇒
d (T − U)

dt
= 0 =⇒ T − U = const.,

from which we conclude that T and U differ by an additive constant E. �

To sum up, the expressions from Propositions A.5, A.6 and A.7 provide us with the ten classical
first integrals of the n-body problem, thanks to which the differential order of the system can be reduced
from 6n to 6n − 10.
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Appendix B

Auxiliary Results

B.1 Rotation matrices in R3

Definition B.1. A rotation matrix Q in R3 is a 3 x 3 orthogonal matrix (Q−1 = QT ) with det Q = 1, i.e.,
Q ∈ SO (3).

Proposition B.1. For any rotation matrix Q the following properties hold:

• (Q x) · (Q y) = x · y, (B.1.1)

• Q (x × y) = (Q x) × (Q y). (B.1.2)

Proof.
• Using the general Proposition x · My = MT x · y, valid for any square matrix M, and considering

that Q is orthogonal, Q−1 = QT , we have

(Q x) · (Q y) =
(
QT Q x

)
· y = x · y.

• Let z ∈ R3 be an arbitrary vector; then, there exists a vector z̃ such that z̃ = Q−1 z, i.e., z = Q z̃.
Then, [

(Q x) × (Q y)
]
· z =

[
(Q x) × (Q y)

]
· Q z̃ = (x × y) · z̃,

where we have applied the general property[
(M x) × (M y)

]
· (M z) = (det M)

[
(x × y) · z

]
,

valid for any 3x3 matrix M.

In view of (B.1.1),
(x × y) · z̃ =

[
Q (x × y)

]
· Q z̃ =

[
Q (x × y)

]
· z,

and then, [
(Q x) × (Q y)

]
· z =

[
Q (x × y)

]
· z.

Taking into account that two vectors are equal if and only if their dot products with an arbitrary vector
z are equal, the expression (B.1.2) is proved. �

Proposition B.2. If Q is a rotation matrix of the class C2 that depends on the time t, we can build an
antisymmetric matrix W given by

W = Q−1Q̇ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 , (B.1.3)

such that W2 is a symmetric matrix and the following relation is satisfied:

Q−1Q̈ = Ẇ + W2. (B.1.4)
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Proof. Differentiating the equality Q−1Q = I3 and applying the orthogonality condition Q−1 = QT , we
obtain

d
dt

(Q−1Q) = Q−1Q̇ + Q̇−1Q = Q−1Q̇ + Q̇T Q = 03x3 =⇒ Q−1Q̇ = −Q̇T Q . (B.1.5)

Using (B.1.5), we prove that W is an antisymmetric matrix as follows:

WT = (Q−1Q̇)T = −(Q̇T Q)T = −QT Q̇ = −Q−1Q̇ = −W.

It can be easily seen that W2 is symmetric:

W2 = W W = −
(
Q̇T Q

) (
Q−1Q̇

)
= −Q̇T Q̇ = −

(
Q̇T Q̇

)T
= (W2)T .

Finally, differentiating W in (B.1.3), Formula (B.1.4) is derived as follows:

Ẇ =
d
dt

(QT Q̇) = Q̇T Q̇ + QT Q̈ = (Q W)T Q̇ + Q−1Q̈ = −W2 + Q−1Q̈ =⇒ Q−1Q̈ = Ẇ + W2.

�

Definition B.2. The instantaneous angular velocity vector corresponding to matrix W is the vector
ω = (ω1, ω2, ω3) that satisfies

W r = ω × r, ω = ω eω,

where eω is a unit vector that represents the direction of the instantaneous axis of rotation, and ω = ‖ω‖
is the norm of the angular velocity with respect to the axis of rotation.

Proposition B.3. The vector eω fulfills the following properties:

Weω = 0, W2 eω = 0. (B.1.6)
Proof.

• W eω = ω × eω = (ω eω) × eω = ω (eω × eω) = 0. (B.1.7)

• W2 eω = W (W eω) = W 0 = 0. (B.1.8)

�
Proposition B.4. The product of the matrices W and W2 by any vector x ∈ R3 is a vector orthogonal
to the axis of rotation.

Proof. Any vector x ∈ R3 can be expressed as x = xω eω + xπ eπ, where eπ represents a direction
orthogonal to the angular velocity, i.e., it belongs to the instantaneous plane Π orthogonal to the axis of
rotation given by the vector eω. Then,

W x = xω W eω + xπ W eπ = 0 + xπ (ω × eπ) = (xπ ω) (eω × eπ) =⇒ Wx⊥ eω.

Denoting y = W x we have W2 x = W (W x) = W y⊥ eω. �

B.2 Rotations and Kinematics

Let us suppose a vector s = s(t) that describes the evolution of the position vector of a particle P given
in an orthogonal reference frame S1. The product of a vector s by a scalar ρ = ρ(t) > 0 is a dilatation
(ρ > 1) or a contraction (ρ < 1) of the norm of the position vector of P.

If the rotation matrix Q = Q(t) formalizes the rotation that transforms the frame S1 into another
orthogonal reference frame S2, then we can write

r = ρQ s, (B.2.1)
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where r = r(t) denotes the vector ρ s given in the reference frame S2.

The time derivatives of r expressed in the frame S2 are

ṙ = ρ̇Q s + ρ Q̇ s + ρQ ṡ, r̈ = ρQ s̈ +
(
2 ρ̇Q + 2 ρ Q̇

)
ṡ +

(
ρ̈Q + 2 ρ̇ Q̇ + ρQ̈

)
s.

From (B.2.1), and applying the formulas (B.1.3) and (B.1.4), we obtain r, ṙ and r̈ referred to S1:

Q−1r = ρ s, Q−1 ṙ = R s + I ṡ, Q−1 r̈ = K s + 2R ṡ + I s̈, (B.2.2)

where

I = ρI3 =

 ρ 0 0
0 ρ 0
0 0 ρ

 ,
R = ρ̇I3 + ρW =

 ρ̇ −ρω3 ρω2
ρω3 ρ̇ −ρω1
−ρω2 ρω1 ρ̇

 ,
K = ρ̈I3 + 2ρ̇W + ρẆ + ρW2

=

 ρ̈ − ρ(ω2
2 + ω2

3) −2ρ̇ω3 − ρ(ω̇3 − ω1ω2) 2ρ̇ω2 + ρ(ω̇2 + ω1ω2)
2ρ̇ω3 + ρ(ω̇3 + ω1ω2) ρ̈ − ρ(ω2

1 + ω2
3) −2ρ̇ω1 − ρ(ω̇1 − ω2ω3)

−2ρ̇ω2 − ρ(ω̇2 − ω1ω3) 2ρ̇ω1 + ρ(ω̇1 + ω2ω3) ρ̈ − ρ(ω2
1 + ω2

2)

 .(B.2.3)

Let us consider now the special case in which the rotation from S1 to S2 is given by a rotation of angle
θ = θ(t) around the third axis. Then,

Q(t) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , W =

 0 −θ̇ 0
θ̇ 0 0
0 0 0

 , ω = (0, 0, θ̇).

K =

 ρ̈ − ρ θ̇2 −(ρ θ̈ + 2 θ̇ ρ̇) 0
ρ θ̈ + 2 θ̇ ρ̇ ρ̈ − ρ θ̇2 0

0 0 ρ̈

 . (B.2.4)

B.3 Other results

Definition B.3. A function f : Rn → R is homogeneous of degree λ ∈ R if

f (αx) = αλ f (x), ∀x ∈ Rn, ∀α ∈ R . (B.3.1)

Theorem B.1. Euler’s Theorem for homogeneous functions. Let f : Rn → R be a homogeneous
function of degree λ. Then,

x · ∇x f (x) = λ f (x), ∀x ∈ Rn. (B.3.2)

Proof. Let us take x ∈ Rn; define x̃ = αx and the function g(α) = αλ f (x)− f (x̃). Differentiating g with
respect to α we obtain

g′(α) = λαλ−1 f (x) − x · ∇x̃ f (x̃).

In particular for α = 1 we have
g′(1) = λ f (x̃) − x · ∇x f (x).

If f is a homogeneous functions of degree λ, then g(α) = 0 and consequently g′(α) = g′(1) = 0, which
proves the theorem. �
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Proposition B.5. Given a finite set of scalars aik and vectors xik, with i, k = 1, 2, . . . , n, such that
aik = aki and xik = −xki , we have ∑

i

∑
k

aikxik = 0.

Proof. ∑
i

∑
k

aikxik =
∑

1≤i<k≤n

aikxik +
∑

1≤i<k≤n

aikxki =
∑

1≤i<k≤n

aik(xik − xik) = 0.

�


