000077243 001__ 77243
000077243 005__ 20210121114447.0
000077243 0247_ $$2doi$$a10.1016/j.ijhydene.2015.01.078
000077243 0248_ $$2sideral$$a91549
000077243 037__ $$aART-2015-91549
000077243 041__ $$aeng
000077243 100__ $$aLemus, J.
000077243 245__ $$aUV polymerization of room temperature ionic liquids for high temperature PEMs: Study of ionic moieties and crosslinking effects
000077243 260__ $$c2015
000077243 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077243 5203_ $$aThe conductivity performance of commercial available room-temperature ionic liquids (RTILs) has been evaluated from room conditions up to 200oC as a function of relative humidity for their potential application in high temperature PEMs. In particular, ammonium and imidazolium based ionic liquids with different counterions and substituents have been investigated. On the basis of conductivity performance, the best RTILs have been selected for the preparation of all solid state ion conductive films by bulk photo-assisted radical polymerization. The goodness of the UV photopolymerization of the respective monomeric ionic liquids (MILs) with vinyl functionality as a function of divynilbenzene cross-linker content has been evaluated by TGA and FTIR analyses. Poly-ionic liquid (PIL) films have been successfully accomplished for polymerized H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide upon exposure to 365 nm UV lamp with an intensity of 2.4 mW/cm2 for 15 min. Conductivity values above 1.1 S∙cm-1 at 200oC have been registered for pure poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide.
000077243 536__ $$9info:eu-repo/grantAgreement/EC/FP7/209481/EU/NANOSTRUCTURED ELECTROLYTE MEMBRANES BASED ON POLYMER-IONIC LIQUIDS-ZEOLITE COMPOSITES FOR HIGH TEMPERATURE PEM FUEL CELL/ZEOCELL
000077243 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000077243 590__ $$a3.205$$b2015
000077243 591__ $$aCHEMISTRY, PHYSICAL$$b47 / 144 = 0.326$$c2015$$dQ2$$eT1
000077243 591__ $$aENERGY & FUELS$$b28 / 88 = 0.318$$c2015$$dQ2$$eT1
000077243 591__ $$aELECTROCHEMISTRY$$b8 / 27 = 0.296$$c2015$$dQ2$$eT1
000077243 592__ $$a1.27$$b2015
000077243 593__ $$aCondensed Matter Physics$$c2015$$dQ1
000077243 593__ $$aRenewable Energy, Sustainability and the Environment$$c2015$$dQ1
000077243 593__ $$aFuel Technology$$c2015$$dQ1
000077243 593__ $$aEnergy Engineering and Power Technology$$c2015$$dQ1
000077243 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000077243 700__ $$0(orcid)0000-0001-5973-4330$$aEguizábal, A.
000077243 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M. P.$$uUniversidad de Zaragoza
000077243 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000077243 773__ $$g40, 15 (2015), 5416-5424$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000077243 8564_ $$s1127328$$uhttps://zaguan.unizar.es/record/77243/files/texto_completo.pdf$$yPostprint
000077243 8564_ $$s67416$$uhttps://zaguan.unizar.es/record/77243/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000077243 909CO $$ooai:zaguan.unizar.es:77243$$particulos$$pdriver
000077243 951__ $$a2021-01-21-10:44:02
000077243 980__ $$aARTICLE