000077242 001__ 77242
000077242 005__ 20200221144300.0
000077242 0247_ $$2doi$$a10.1021/acsami.6b13315
000077242 0248_ $$2sideral$$a97872
000077242 037__ $$aART-2016-97872
000077242 041__ $$aeng
000077242 100__ $$aKallem, P.
000077242 245__ $$aConstructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport
000077242 260__ $$c2016
000077242 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077242 5203_ $$aPolymeric ionic liquids (PILs) have triggered great interest as all solid-state flexible electrolytes because of safety and superior thermal, chemical, and electrochemical stability. It is of great importance to fabricate highly conductive electrolyte membranes capable to operate above 120 °C under anhydrous conditions and in the absence of mineral acids, without sacrificing the mechanical behavior. Herein, the diminished dimensional and mechanical stability of poly1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide has been improved thanks to its infiltration on a polybenzimidale (PBI) support with specific pore architecture. Our innovative solution is based on the synergic combination of an emerging class of materials and sustainable large-scale manufacturing techniques (UV polymerization and replication by microtransfer-molding). Following this approach, the PIL plays the proton conduction role, and the PBI microsieve (SPBI) mainly provides the mechanical reinforcement. Among the resulting electrolyte membranes, conductivity values above 50 mS·cm-1 at 200 °C and 10.0 MPa as tensile stress are shown by straight microchannels of poly1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide cross-linked with 1% of dyvinylbenzene embedded in a PBI microsieve with well-defined porosity (36%) and pore diameter (17 µm).
000077242 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000077242 590__ $$a7.504$$b2016
000077242 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b12 / 87 = 0.138$$c2016$$dQ1$$eT1
000077242 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b22 / 275 = 0.08$$c2016$$dQ1$$eT1
000077242 592__ $$a2.56$$b2016
000077242 593__ $$aMaterials Science (miscellaneous)$$c2016$$dQ1
000077242 593__ $$aNanoscience and Nanotechnology$$c2016$$dQ1
000077242 593__ $$aMedicine (miscellaneous)$$c2016$$dQ1
000077242 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000077242 700__ $$0(orcid)0000-0001-5973-4330$$aEguizabal, A.
000077242 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000077242 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M. P.$$uUniversidad de Zaragoza
000077242 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000077242 773__ $$g8, 51 (2016), 35377-35389$$pACS appl. mater. interfaces$$tACS Applied Materials & Interfaces$$x1944-8244
000077242 8564_ $$s1885151$$uhttps://zaguan.unizar.es/record/77242/files/texto_completo.pdf$$yPostprint
000077242 8564_ $$s59577$$uhttps://zaguan.unizar.es/record/77242/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000077242 909CO $$ooai:zaguan.unizar.es:77242$$particulos$$pdriver
000077242 951__ $$a2020-02-21-13:32:12
000077242 980__ $$aARTICLE