000075944 001__ 75944
000075944 005__ 20191126134634.0
000075944 0247_ $$2doi$$a10.1016/j.applthermaleng.2017.12.052
000075944 0248_ $$2sideral$$a103300
000075944 037__ $$aART-2018-103300
000075944 041__ $$aeng
000075944 100__ $$aDannemand, Mark
000075944 245__ $$aPorosity and density measurements of sodium acetate trihydrate for thermal energy storage
000075944 260__ $$c2018
000075944 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075944 5203_ $$aSodium acetate trihydrate (SAT) can be used as phase change material in latent heat storage with or without utilizing supercooling. The change of density from liquid to solid state leads to formation of cavities inside the bulk SAT during solidification. Samples of SAT which had solidified from supercooled state at ambient temperature and samples which had solidified with a minimal degree supercooled were investigated. The temperature dependent densities of liquid and the two types of solid SAT were measured with a density meter and a thermomechanical analyzer. The cavities formed inside samples of solid SAT, which had solidified after a high or minimal degree of supercooling, were investigated by X-ray scanning and computer tomography. The apparent density of solid SAT depended on whether it solidified from a supercooled state or not. A sample which solidified from a supercooled liquid contained 15% cavities and had a density of 1.26¿g/cm3 at 25¿°C. SAT which had solidified with minimal supercooling contained 9% cavities and had a density of 1.34¿g/cm3 at 25¿°C. The apparent densities of the solid SAT samples were significant lower than the value of solid SAT reported in literature of 1.45¿g/cm3. The density of liquid and supercooled SAT with extra water was also determined at different temperatures.
000075944 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/ENE2014-57262-R$$9info:eu-repo/grantAgreement/ES/MICINN/ENE2011-28269-C03-01
000075944 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075944 590__ $$a4.026$$b2018
000075944 591__ $$aENGINEERING, MECHANICAL$$b13 / 129 = 0.101$$c2018$$dQ1$$eT1
000075944 591__ $$aTHERMODYNAMICS$$b7 / 60 = 0.117$$c2018$$dQ1$$eT1
000075944 591__ $$aMECHANICS$$b13 / 134 = 0.097$$c2018$$dQ1$$eT1
000075944 591__ $$aENERGY & FUELS$$b32 / 103 = 0.311$$c2018$$dQ2$$eT1
000075944 592__ $$a1.769$$b2018
000075944 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000075944 593__ $$aEnergy Engineering and Power Technology$$c2018$$dQ1
000075944 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075944 700__ $$0(orcid)0000-0002-8015-4469$$aDelgado, Monica$$uUniversidad de Zaragoza
000075944 700__ $$0(orcid)0000-0001-7360-4188$$aLazaro, Ana$$uUniversidad de Zaragoza
000075944 700__ $$aPenalosa, Conchita
000075944 700__ $$aGundlach, Carsten
000075944 700__ $$aTrinderup, Camilla
000075944 700__ $$aJohansen, Jakob Berg
000075944 700__ $$aMoser, Christoph
000075944 700__ $$aSchranzhofer, Hermann
000075944 700__ $$aFurbo, Simon
000075944 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000075944 773__ $$g131 (2018), 707-714$$pAppl. therm. eng.$$tApplied Thermal Engineering$$x1359-4311
000075944 8564_ $$s1433998$$uhttps://zaguan.unizar.es/record/75944/files/texto_completo.pdf$$yPostprint
000075944 8564_ $$s91920$$uhttps://zaguan.unizar.es/record/75944/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075944 909CO $$ooai:zaguan.unizar.es:75944$$particulos$$pdriver
000075944 951__ $$a2019-11-26-13:43:10
000075944 980__ $$aARTICLE