000075908 001__ 75908
000075908 005__ 20191126134629.0
000075908 0247_ $$2doi$$a10.1016/j.clay.2017.11.025
000075908 0248_ $$2sideral$$a103756
000075908 037__ $$aART-2018-103756
000075908 041__ $$aeng
000075908 100__ $$aLaita, Elisa
000075908 245__ $$aMineral and textural transformations in aluminium-rich clays during ceramic firing
000075908 260__ $$c2018
000075908 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075908 5203_ $$aThe aim of this study has been to analyse the mineralogical and textural transformations of a set of aluminium-rich shales of interest for refractory and ceramic uses, fired from 800 °C to 1300 °C. To that end, raw and fired samples were analysed by X-ray diffraction, transmitted light microscopy, field emission scanning electron microscopy, and transmission electron microscopy. Raw samples comprise variable proportions of illite, pyrophyllite, orthoclase, quartz, kaolinite, mixed-layer I-Sm, and organic matter. At temperatures below 800 °C, kaolinite, mixed-layer I-Sm, and organic matter are destabilized, indicating that they are the least stable phases in the firing process. Illite, pyrophyllite, and orthoclase remain until 1000 °C and show a broader stability field during firing than in natural environments. Quartz persists throughout the entire firing process, although it is partly replaced by vitreous phase. Hematite crystallizes at 900 °C. Vitrification begins at 1000 °C, marking the first significant textural change. From 1000 °C mullite starts to crystallize from the Si- and Al-rich vitreous phase. The mullite composition is not stoichiometric and probably as temperature increases Si is partially replaced by Al, Fe and Ti in the structure. Nevertheless, with the increase of the firing temperature, the mullite composition is closer to the theoretical composition and also to that of natural mullites. Furthermore its crystal thickness increases with temperature up to 70 nm.
000075908 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CGL2013-46169-C2-1-P
000075908 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075908 590__ $$a3.89$$b2018
000075908 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b73 / 293 = 0.249$$c2018$$dQ1$$eT1
000075908 591__ $$aMINERALOGY$$b4 / 29 = 0.138$$c2018$$dQ1$$eT1
000075908 591__ $$aCHEMISTRY, PHYSICAL$$b51 / 148 = 0.345$$c2018$$dQ2$$eT2
000075908 592__ $$a0.99$$b2018
000075908 593__ $$aGeology$$c2018$$dQ1
000075908 593__ $$aGeochemistry and Petrology$$c2018$$dQ1
000075908 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075908 700__ $$0(orcid)0000-0002-4970-6333$$aBauluz, Blanca$$uUniversidad de Zaragoza
000075908 7102_ $$12000$$2120$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Cristalografía Mineralog.
000075908 773__ $$g152 (2018), 284-289$$pAppl. clay sci.$$tAPPLIED CLAY SCIENCE$$x0169-1317
000075908 8564_ $$s668348$$uhttps://zaguan.unizar.es/record/75908/files/texto_completo.pdf$$yPostprint
000075908 8564_ $$s88236$$uhttps://zaguan.unizar.es/record/75908/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075908 909CO $$ooai:zaguan.unizar.es:75908$$particulos$$pdriver
000075908 951__ $$a2019-11-26-13:40:09
000075908 980__ $$aARTICLE