000075753 001__ 75753
000075753 005__ 20201130083156.0
000075753 0247_ $$2doi$$a10.1016/j.apenergy.2015.10.014
000075753 0248_ $$2sideral$$a94587
000075753 037__ $$aART-2016-94587
000075753 041__ $$aeng
000075753 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, M.$$uUniversidad de Zaragoza
000075753 245__ $$aPower to Gas-biomass oxycombustion hybrid system: Energy integration and potential applications
000075753 260__ $$c2016
000075753 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075753 5203_ $$aA promising hybridization which increases the chances of deployment of Power to Gas technology is found in the synergy with oxycombustion of biomass. This study assesses the efficiency of an energy integrated system under different sizes and potential applications. District heating and industrial processes are revealed as the most suitable potential applications for this hybrid technology. Global efficiency of the combined system may be increased through thermal energy integration. The relative increment of efficiency achieved for those designs which avoid the requirement of an air separation unit and for those which completely consumed the generated CO2, are 24.5% and 29.7% respectively. A 2 MWth district heating case study is also analysed, revealing that 81.2% of the total available heat from the PtG–oxy system could be integrated raising the global efficiency up to 78.7% at the adequate operational point. Further ‘full-fuel-cycle’ analysis will be required prior to decide the interest of the concept under a specific scenario in comparison to other available energy storage technologies.
000075753 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075753 590__ $$a7.182$$b2016
000075753 591__ $$aENGINEERING, CHEMICAL$$b4 / 135 = 0.03$$c2016$$dQ1$$eT1
000075753 591__ $$aENERGY & FUELS$$b6 / 92 = 0.065$$c2016$$dQ1$$eT1
000075753 592__ $$a3.011$$b2016
000075753 593__ $$aBuilding and Construction$$c2016$$dQ1
000075753 593__ $$aCivil and Structural Engineering$$c2016$$dQ1
000075753 593__ $$aEnergy (miscellaneous)$$c2016$$dQ1
000075753 593__ $$aNuclear Energy and Engineering$$c2016$$dQ1
000075753 593__ $$aFuel Technology$$c2016$$dQ1
000075753 593__ $$aManagement, Monitoring, Policy and Law$$c2016$$dQ1
000075753 593__ $$aMechanical Engineering$$c2016$$dQ1
000075753 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ1
000075753 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075753 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, P.
000075753 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L.M.$$uUniversidad de Zaragoza
000075753 700__ $$aEspatolero, S.
000075753 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000075753 773__ $$g167 (2016), 221-229$$pAppl. energy$$tApplied Energy$$x0306-2619
000075753 8564_ $$s699098$$uhttps://zaguan.unizar.es/record/75753/files/texto_completo.pdf$$yPostprint
000075753 8564_ $$s63400$$uhttps://zaguan.unizar.es/record/75753/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075753 909CO $$ooai:zaguan.unizar.es:75753$$particulos$$pdriver
000075753 951__ $$a2020-11-30-07:57:54
000075753 980__ $$aARTICLE