000070999 001__ 70999
000070999 005__ 20200221144319.0
000070999 0247_ $$2doi$$a10.1016/j.ijhydene.2016.05.285
000070999 0248_ $$2sideral$$a96682
000070999 037__ $$aART-2016-96682
000070999 041__ $$aeng
000070999 100__ $$aSenthil Kumar, S. M.
000070999 245__ $$aHydrothermal assisted morphology designed MoS2 material as alternative cathode catalyst for PEM electrolyser application
000070999 260__ $$c2016
000070999 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070999 5203_ $$aIn this work, we developed a simple and cost-effective hydrothermal route to regulate the formation of molybdenum disulfide (MoS2) in different morphologies, like, nano-sheet, nano-capsule and nano-flake structure by controlling the reaction temperature and sulphur precursor employed. Such a fine tuning of different morphologies yields a leverage to obtain novel shapes with high surface area to employ them as suitable candidates for hydrogen evolution catalysts. Moreover, we report here the first time observation of MoS2 nano-capsule formation via environmentally benign hydrothermal route and characterized them by X-ray diffraction (XRD), nitrogen adsorption and desorption by Brunaer–Emmett–Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photo-electron spectroscopy (XPS) techniques. MoS2 nano-capsules exhibits superior activity towards hydrogen evolution reaction (HER) with a low over-potential of 120 mV (RHE), accompanied by large exchange current density and excellent stability in 0.5 M H2SO4 solution. MoS2 nano-capsule catalyst was coated on solid proton conducting membrane (Nafion) and IrO2 as anode catalyst. The performance of the catalyst was evaluated in MEA mode for 200 h at 2 V without any degradation of electrocatalytic activity.
000070999 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070999 590__ $$a3.582$$b2016
000070999 591__ $$aELECTROCHEMISTRY$$b7 / 29 = 0.241$$c2016$$dQ1$$eT1
000070999 591__ $$aENERGY & FUELS$$b28 / 92 = 0.304$$c2016$$dQ2$$eT1
000070999 591__ $$aCHEMISTRY, PHYSICAL$$b45 / 145 = 0.31$$c2016$$dQ2$$eT1
000070999 592__ $$a1.145$$b2016
000070999 593__ $$aCondensed Matter Physics$$c2016$$dQ1
000070999 593__ $$aRenewable Energy, Sustainability and the Environment$$c2016$$dQ1
000070999 593__ $$aFuel Technology$$c2016$$dQ1
000070999 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ1
000070999 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070999 700__ $$aSelvakumar, K.
000070999 700__ $$aThangamuthu, R.
000070999 700__ $$aKarthigai Selvi, A.
000070999 700__ $$aRavichandran, S.
000070999 700__ $$aSozhan, G.
000070999 700__ $$aRajasekar, K.
000070999 700__ $$0(orcid)0000-0003-3363-2912$$aNavascues, N.
000070999 700__ $$0(orcid)0000-0002-2966-9088$$aIrusta, S.$$uUniversidad de Zaragoza
000070999 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000070999 773__ $$g41, 31 (2016), 13331-13340$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000070999 8564_ $$s1077288$$uhttps://zaguan.unizar.es/record/70999/files/texto_completo.pdf$$yPostprint
000070999 8564_ $$s67963$$uhttps://zaguan.unizar.es/record/70999/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070999 909CO $$ooai:zaguan.unizar.es:70999$$particulos$$pdriver
000070999 951__ $$a2020-02-21-13:40:45
000070999 980__ $$aARTICLE