000070983 001__ 70983
000070983 005__ 20200221144241.0
000070983 0247_ $$2doi$$a10.1140/epjb/e2016-70064-0
000070983 0248_ $$2sideral$$a106326
000070983 037__ $$aART-2016-106326
000070983 041__ $$aeng
000070983 100__ $$aWalkenhorst, J.
000070983 245__ $$aTailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra
000070983 260__ $$c2016
000070983 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070983 5203_ $$aRecent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.
000070983 536__ $$9info:eu-repo/grantAgreement/ES/UZ-DGA/Grupos Consolidados-IT578-13$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-2-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-1-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 646259-MOSTOPHOS$$9info:eu-repo/grantAgreement/EC/H2020/646259/EU/Modelling stability of organic phosphorescent light-emitting diodes/MOSTOPHOS$$9info:eu-repo/grantAgreement/EC/FP7/267374/EU/Dynamical processes in open quantum systems: pushing the frontiers of theoretical spectroscopy/DYNAMO$$9info:eu-repo/grantAgreement/EUR/COST/MP1306-EUSPEC
000070983 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000070983 590__ $$a1.461$$b2016
000070983 591__ $$aPHYSICS, CONDENSED MATTER$$b45 / 67 = 0.672$$c2016$$dQ3$$eT3
000070983 592__ $$a0.423$$b2016
000070983 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ2
000070983 593__ $$aCondensed Matter Physics$$c2016$$dQ3
000070983 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070983 700__ $$aDe Giovannini, U.
000070983 700__ $$0(orcid)0000-0002-9253-7926$$aCastro, A.$$uUniversidad de Zaragoza
000070983 700__ $$aRubio, A.
000070983 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000070983 773__ $$g89, 5 (2016), 128 [13 pp]$$pEur. phys. j., B Cond. matter phys.$$tEUROPEAN PHYSICAL JOURNAL B$$x1434-6028
000070983 8564_ $$s3029150$$uhttps://zaguan.unizar.es/record/70983/files/texto_completo.pdf$$yPostprint
000070983 8564_ $$s119118$$uhttps://zaguan.unizar.es/record/70983/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070983 909CO $$ooai:zaguan.unizar.es:70983$$particulos$$pdriver
000070983 951__ $$a2020-02-21-13:21:42
000070983 980__ $$aARTICLE