000070981 001__ 70981
000070981 005__ 20190709135457.0
000070981 0247_ $$2doi$$a10.1016/j.cej.2017.02.003
000070981 0248_ $$2sideral$$a98996
000070981 037__ $$aART-2017-98996
000070981 041__ $$aeng
000070981 100__ $$0(orcid)0000-0002-6277-7996$$aLarrea, A.
000070981 245__ $$aEfficient production of hybrid bio-nanomaterials by continuous microchannel emulsification: Dye-doped SiO2 and Au-PLGA nanoparticles
000070981 260__ $$c2017
000070981 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070981 5203_ $$aA novel microfluidic system was designed to produce in a continuous manner hybrid nanomaterials using the microchannel double w/o/w emulsification technique. Double w/o/w nanoemulsions were produced combining two inter-digital micromixers that afford working in continuous flow and with a high reproducibility and control on the reaction conditions. High throughput production of two hybrid nanomaterials, dye-doped SiO2 (4 mg/min) and Au-loaded poly(lactic-co-glycolic) acid (PLGA) (168 mg/min) nanoparticles, were achieved, showing the resulting nanomaterials excellent and reproducible optical properties and tunable loading. These hybrid nanomaterials could be potentially used in different biomedical applications. In addition, the microfluidic system designed for carrying out double emulsification enabled to decrease the particle size distribution of dye-doped SiO2 nanoparticles (NPs) up to 20 nm and to improve the Au NPs loading efficiency in Au-loaded PLGA hybrid nanoparticles. The excellent control achieved in the Au NPs loading allowed tuning the payload on demand. Finally, the microfluidic system designed in this work overpasses the productivity described in previously published batch-type reactors, while assuring the same properties of the resulting hybrid nanomaterials.
000070981 536__ $$9info:eu-repo/grantAgreement/EC/FP7/321642/EU/Development of a microfluidic platform to produce nanomaterials and assessment on new nanotechnology applications/PLATFORM2NANO$$9info:eu-repo/grantAgreement/ES/DGA/FSE
000070981 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070981 590__ $$a6.735$$b2017
000070981 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 50 = 0.06$$c2017$$dQ1$$eT1
000070981 591__ $$aENGINEERING, CHEMICAL$$b7 / 137 = 0.051$$c2017$$dQ1$$eT1
000070981 592__ $$a1.863$$b2017
000070981 593__ $$aChemical Engineering (miscellaneous)$$c2017$$dQ1
000070981 593__ $$aIndustrial and Manufacturing Engineering$$c2017$$dQ1
000070981 593__ $$aEnvironmental Chemistry$$c2017$$dQ1
000070981 593__ $$aChemistry (miscellaneous)$$c2017$$dQ1
000070981 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070981 700__ $$0(orcid)0000-0002-8787-117X$$aClemente, A.$$uUniversidad de Zaragoza
000070981 700__ $$aLuque-Michel, E.
000070981 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000070981 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000070981 773__ $$g316 (2017), 663-672$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000070981 8564_ $$s658398$$uhttps://zaguan.unizar.es/record/70981/files/texto_completo.pdf$$yPostprint
000070981 8564_ $$s50697$$uhttps://zaguan.unizar.es/record/70981/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070981 909CO $$ooai:zaguan.unizar.es:70981$$particulos$$pdriver
000070981 951__ $$a2019-07-09-11:44:04
000070981 980__ $$aARTICLE