000070980 001__ 70980
000070980 005__ 20200108100349.0
000070980 0247_ $$2doi$$a10.1016/j.solener.2018.05.037
000070980 0248_ $$2sideral$$a106399
000070980 037__ $$aART-2018-106399
000070980 041__ $$aeng
000070980 100__ $$0(orcid)0000-0001-5561-5457$$aCollado, F.J.$$uUniversidad de Zaragoza
000070980 245__ $$aFast and reliable flux map on cylindrical receivers
000070980 260__ $$c2018
000070980 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070980 5203_ $$aThe thermal design of external solar receivers is a complex problem, in which the main input is the flux caused by the entire heliostat field on the cylindrical receiver surface. In this work, a fast and reliable model of flux distribution on the cylindrical receiver is proposed. This new cylinder flux map is based on the HFLCAL model for the analytic flux density sent by a heliostat on its image plane and the projection, in the direction of the central reflected ray, of any point in the plane image onto the cylindrical surface. The heliostat flux density includes shading and blocking, cosine of the incidence angle, atmospheric attenuation and effective reflectivity. A differential energy balance supports the coherence of the new model, i.e. the power contained in a differential of area in the image plane has to be equal to the power contained in the projected differential of area onto the cylinder. As an application of this new flux distribution on cylindrical receivers, we present the receiver sizing for a Noor III-like 150 MWe plant, with 7400 heliostats, in which the minimum LCOE gives the receiver diameter and a preliminary receiver height. With the help of the new flux map, this height is analysed to verify the maximum allowable flux. A multi-aiming strategy suggested by Vant-Hull (2002) and put into practice by Sanchez-Gonzalez and Santana (2015) is used to spread the hot spots along the receiver height. The PC CPU time to produce a coherent flux map on the cylinder is around six seconds.
000070980 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2015-67518-R
000070980 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070980 590__ $$a4.674$$b2018
000070980 591__ $$aENERGY & FUELS$$b24 / 103 = 0.233$$c2018$$dQ1$$eT1
000070980 592__ $$a1.593$$b2018
000070980 593__ $$aRenewable Energy, Sustainability and the Environment$$c2018$$dQ1
000070980 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000070980 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070980 700__ $$0(orcid)0000-0002-2226-7561$$aGuallar, J.$$uUniversidad de Zaragoza
000070980 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000070980 773__ $$g169 (2018), 556-564$$pSol. energy$$tSolar Energy$$x0038-092X
000070980 8564_ $$s1019853$$uhttps://zaguan.unizar.es/record/70980/files/texto_completo.pdf$$yVersión publicada
000070980 8564_ $$s94604$$uhttps://zaguan.unizar.es/record/70980/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070980 909CO $$ooai:zaguan.unizar.es:70980$$particulos$$pdriver
000070980 951__ $$a2020-01-08-09:32:00
000070980 980__ $$aARTICLE