000070941 001__ 70941
000070941 005__ 20200108100346.0
000070941 0247_ $$2doi$$a10.3390/s18051333
000070941 0248_ $$2sideral$$a106488
000070941 037__ $$aART-2018-106488
000070941 041__ $$aeng
000070941 100__ $$aCambra, C.
000070941 245__ $$aSmart system for bicarbonate control in irrigation for hydroponic precision farming
000070941 260__ $$c2018
000070941 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070941 5203_ $$aImproving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation.
000070941 536__ $$9info:eu-repo/grantAgreement/EC/FP7/609475/EU/EURO-MEDITERRANEAN Cooperation through ERANET joint activities and beyond/ERANETMED
000070941 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000070941 590__ $$a3.031$$b2018
000070941 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b15 / 61 = 0.246$$c2018$$dQ1$$eT1
000070941 591__ $$aCHEMISTRY, ANALYTICAL$$b23 / 84 = 0.274$$c2018$$dQ2$$eT1
000070941 591__ $$aELECTROCHEMISTRY$$b12 / 26 = 0.462$$c2018$$dQ2$$eT2
000070941 592__ $$a0.592$$b2018
000070941 593__ $$aAnalytical Chemistry$$c2018$$dQ2
000070941 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ2
000070941 593__ $$aMedicine (miscellaneous)$$c2018$$dQ2
000070941 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ2
000070941 593__ $$aInstrumentation$$c2018$$dQ2
000070941 593__ $$aBiochemistry$$c2018$$dQ2
000070941 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070941 700__ $$aSendra, S.
000070941 700__ $$aLloret, J.
000070941 700__ $$0(orcid)0000-0002-4773-4904$$aLacuesta, R.$$uUniversidad de Zaragoza
000070941 7102_ $$15007$$2570$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Lenguajes y Sistemas Inf.
000070941 773__ $$g18, 5 (2018), 1333 [16 pp]$$pSensors$$tSensors (Switzerland)$$x1424-8220
000070941 8564_ $$s769142$$uhttps://zaguan.unizar.es/record/70941/files/texto_completo.pdf$$yVersión publicada
000070941 8564_ $$s104539$$uhttps://zaguan.unizar.es/record/70941/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070941 909CO $$ooai:zaguan.unizar.es:70941$$particulos$$pdriver
000070941 951__ $$a2020-01-08-09:30:15
000070941 980__ $$aARTICLE