Orientation symmetry breaking in self-assembled Ce1-xGdxO2-y nanowires derived from chemical solutions
Resumen: Understanding the growth mechanisms of nanostructures obtained from chemical solutions, a highthroughput production methodology, is essential to correlate precisely the growth conditions with the nanostructures'' morphology, dimensions and orientation. It is shown that self-organized (011)-oriented Ce0.9Gd0.1O2-y (CGO) nanowires having a single in-plane orientation are achieved when an anisotropic (011)-LaAlO3 (LAO) substrate is chosen. STEM and AFM images of the epitaxial nanowires reveal the (001) CGO[ 0-11]parallel to(011) LAO[100] growth orientation, with the enlargement occurring along the [0-11] CGO direction with (111) lateral facets. The chosen substrate allowed us to study a unique case where the resulting biaxial strain is isotropic, while the dissimilar lateral surface energies are the key factor to obtain an energetically imbalanced and non-degenerated nanowire configuration. Rapid Thermal Annealing (RTA) has allowed sorting of experimental nucleation from coarsening and analysis of the kinetic phenomena of the nanowires. A thermodynamic driving force is shown to exist for a continuous elongation of the nanowires while the coarsening rates are found to be strongly temperature dependent and so kinetic effects are the key factors to control the size and density of the self-organized nanowire system. A remarkably fast nanowire growth rate (14-40 nm min(-1)) is observed, which we associate with a high atomic mobility probably linked to a high concentration of oxygen vacancies, as detected by XPS. These nanowires are envisaged as model systems pushing forward the study of low energetic and highly oxygen deficient {111} lateral facets useful for catalysis, gas sensors and ionic conductivity applications.
Idioma: Inglés
DOI: 10.1039/c6ra23717g
Año: 2016
Publicado en: RSC Advances 6, 99 (2016), 97226-97236
ISSN: 2046-2069

Factor impacto JCR: 3.108 (2016)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 59 / 166 = 0.355 (2016) - Q2 - T2
Factor impacto SCIMAGO: 0.889 - Chemistry (miscellaneous) (Q1) - Chemical Engineering (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/CSIC/ESF/E-08-2012-1321248
Financiación: info:eu-repo/grantAgreement/ES/CSIC/ESF/E-08-2013-1028356
Financiación: info:eu-repo/grantAgreement/ES/FEDER/CSD2007-00041
Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2014-56109-C3-3-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2011-28874-C02-01
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2014-51778-C2-1-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2015-68994-REDC
Financiación: info:eu-repo/grantAgreement/ES/MINECO/SEV-2013-0295
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial.


Exportado de SIDERAL (2020-02-21-13:22:01)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2018-06-13, última modificación el 2020-02-21


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)