ABC of ladder operators for rationally extended quantum harmonic oscillator systems
Resumen: The problem of construction of ladder operators for rationally extended quantum harmonic oscillator (REQHO) systems of a general form is investigated in the light of existence of different schemes of the Darboux-Crum-Krein-Adler transformations by which such systems can be generated from the quantum harmonic oscillator. Any REQHO system is characterized by the number of separated states in its spectrum, the number of valence bands in which the separated states are organized, and by the total number of the missing energy levels and their position. All these peculiarities of a REQHO system are shown to be detected and reflected by a trinity (A±, B±, C±) of the basic (primary) lowering and raising ladder operators related between themselves by certain algebraic identities with coefficients polynomially-dependent on the Hamiltonian. We show that all the secondary, higher-order ladder operators are obtainable by a composition of the basic ladder operators of the trinity which form the set of the spectrum-generating operators. Each trinity, in turn, can be constructed from the intertwining operators of the two complementary minimal schemes of the DarbouxCrumKreinAdler transformations.
Idioma: Inglés
DOI: 10.1088/1751-8121/aa739b
Año: 2017
Publicado en: Journal of Physics A-Mathematical and Theoretical 50, 27 (2017), 275202 [30 pp.]
ISSN: 1751-8113

Financiación: info:eu-repo/grantAgreement/ES/DGA/E24-1
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2015-64166-C2-1
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Física Teórica (Departamento de Física Teórica)

Derechos Reservados Derechos reservados por el editor de la revista

Exportado de SIDERAL (2018-06-13-08:00:16)

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física Teórica

 Registro creado el 2018-06-13, última modificación el 2018-06-13

Valore este documento:

Rate this document:
(Sin ninguna reseña)