000070810 001__ 70810
000070810 005__ 20190709135425.0
000070810 0247_ $$2doi$$a10.1016/j.actamat.2016.12.016
000070810 0248_ $$2sideral$$a97473
000070810 037__ $$aART-2017-97473
000070810 041__ $$aeng
000070810 100__ $$aGavilán, H.
000070810 245__ $$aHow shape and internal structure affect the magnetic properties of anisometric magnetite nanoparticles
000070810 260__ $$c2017
000070810 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070810 5203_ $$aA three-step aqueous approach to obtain large (>50 nm) magnetite single-core particles has been developed. The steps are a) synthesis of antiferromagnetic nanoparticles, b) particle coating and c) subsequent reduction of the core material to magnetite. By variation of precursor material and process conditions, the synthesis yielded rhombohedra, discs or needles below 200 nm. A combination of X-ray diffraction, 57Fe Mössbauer spectroscopy and infrared spectroscopy confirmed magnetite to be the dominant final core material. From transmission electron microscopy, we identified porous structures after the reduction. Magnetic characterization of the different magnetic nanopaticles revealed strikingly different magnetic behaviour depending on their shape, internal structure and reduction process. We conclude that each of these parameters have to be considered in further characterization of large magnetite nanoparticles.
000070810 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2014-15512$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-52069-R$$9info:eu-repo/grantAgreement/EC/FP7/604448/EU/Nanometrology Standardization Methods for Magnetic Nanoparticles/NANOMAG$$9info:eu-repo/grantAgreement/EUR/COST/TD1402
000070810 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070810 590__ $$a6.036$$b2017
000070810 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b1 / 75 = 0.013$$c2017$$dQ1$$eT1
000070810 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b40 / 285 = 0.14$$c2017$$dQ1$$eT1
000070810 592__ $$a3.263$$b2017
000070810 593__ $$aCeramics and Composites$$c2017$$dQ1
000070810 593__ $$aPolymers and Plastics$$c2017$$dQ1
000070810 593__ $$aMetals and Alloys$$c2017$$dQ1
000070810 593__ $$aElectronic, Optical and Magnetic Materials$$c2017$$dQ1
000070810 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070810 700__ $$aPosth, O.
000070810 700__ $$aBogart, L. K.
000070810 700__ $$aSteinhoff, U.
000070810 700__ $$0(orcid)0000-0003-2366-3598$$aGutiérrez, L.$$uUniversidad de Zaragoza
000070810 700__ $$aMorales, M. P.
000070810 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000070810 773__ $$g125 (2017), 416-424$$pActa mater.$$tACTA MATERIALIA$$x1359-6454
000070810 8564_ $$s754692$$uhttps://zaguan.unizar.es/record/70810/files/texto_completo.pdf$$yPostprint
000070810 8564_ $$s41776$$uhttps://zaguan.unizar.es/record/70810/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070810 909CO $$ooai:zaguan.unizar.es:70810$$particulos$$pdriver
000070810 951__ $$a2019-07-09-11:28:34
000070810 980__ $$aARTICLE