Experimental determination of the heat transfer coefficient for the optimal design of the cooling system of a PEM fuel cell placed inside the fuselage of an UAV
Resumen: The objective of this research is to calculate the heat transfer coefficients needed for the further design of the optimal cooling system of a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stack that will be incorporated to the powerplant of a light unmanned aerial vehicle (UAV) capable of reaching an altitude of 10,000 m. Experiments are performed in two rectangular tunnels, for three different form factors, in experimental conditions as close as possible to the actual ones in the HT-PEMFC stack. For the calculations, all the relevant thermal processes are considered (i.e., convection and radiation). Different parameters are measured, such as air mass flow rate, inlet and outlet air temperatures, and wall temperatures for bipolar plates and endplates. Different numerical models are fitted revealing the influence of the diverse relevant non-dimensional groups on the Nusselt number. Heat transfer coefficients calculated for the air cooling flow vary from 8 to 44 W m2 K1. Results obtained at sea level are extrapolated for a flight ceiling of 10 km. The flow section is optimized as a function of the power required to cool the stack down to the temperature recommended by the membrane-electrode assembly
(MEA) manufacturer using a numerical code specifically developed for this purpose.

Idioma: Inglés
DOI: 10.1016/j.applthermaleng.2015.06.003
Año: 2015
Publicado en: Applied Thermal Engineering 89 (2015), 1-10
ISSN: 1359-4311

Factor impacto JCR: 3.043 (2015)
Categ. JCR: ENGINEERING, MECHANICAL rank: 7 / 132 = 0.053 (2015) - Q1 - T1
Categ. JCR: THERMODYNAMICS rank: 6 / 58 = 0.103 (2015) - Q1 - T1
Categ. JCR: MECHANICS rank: 7 / 135 = 0.052 (2015) - Q1 - T1
Categ. JCR: ENERGY & FUELS rank: 30 / 88 = 0.341 (2015) - Q2 - T2

Factor impacto SCIMAGO: 1.683 - Industrial and Manufacturing Engineering (Q1) - Energy Engineering and Power Technology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2012-38642-C02-01
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2021-01-21-11:01:55)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2018-05-23, last modified 2021-01-21


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)