000070771 001__ 70771
000070771 005__ 20180523160640.0
000070771 0247_ $$2doi$$a10.1016/j.applthermaleng.2015.06.003
000070771 0248_ $$2sideral$$a90808
000070771 037__ $$aART-2015-90808
000070771 041__ $$aeng
000070771 100__ $$0(orcid)0000-0002-0063-1318$$aBarroso, Jorge$$uUniversidad de Zaragoza
000070771 245__ $$aExperimental determination of the heat transfer coefficient for the optimal design of the cooling system of a PEM fuel cell placed inside the fuselage of an UAV
000070771 260__ $$c2015
000070771 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070771 5203_ $$aThe objective of this research is to calculate the heat transfer coefficients needed for the further design of the optimal cooling system of a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stack that will be incorporated to the powerplant of a light unmanned aerial vehicle (UAV) capable of reaching an altitude of 10,000 m. Experiments are performed in two rectangular tunnels, for three different form factors, in experimental conditions as close as possible to the actual ones in the HT-PEMFC stack. For the calculations, all the relevant thermal processes are considered (i.e., convection and radiation). Different parameters are measured, such as air mass flow rate, inlet and outlet air temperatures, and wall temperatures for bipolar plates and endplates. Different numerical models are fitted revealing the influence of the diverse relevant non-dimensional groups on the Nusselt number. Heat transfer coefficients calculated for the air cooling flow vary from 8 to 44 W m2 K1. Results obtained at sea level are extrapolated for a flight ceiling of 10 km. The flow section is optimized as a function of the power required to cool the stack down to the temperature recommended by the membrane-electrode assembly
(MEA) manufacturer using a numerical code specifically developed for this purpose.
000070771 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2012-38642-C02-01
000070771 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070771 590__ $$a3.043$$b2015
000070771 591__ $$aENGINEERING, MECHANICAL$$b7 / 131 = 0.053$$c2015$$dQ1$$eT1
000070771 591__ $$aTHERMODYNAMICS$$b6 / 57 = 0.105$$c2015$$dQ1$$eT1
000070771 591__ $$aMECHANICS$$b7 / 135 = 0.052$$c2015$$dQ1$$eT1
000070771 591__ $$aENERGY & FUELS$$b30 / 88 = 0.341$$c2015$$dQ2$$eT2
000070771 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070771 700__ $$aJordi Renau, Jordi
000070771 700__ $$0(orcid)0000-0003-4141-6072$$aLozano, Antonio$$uUniversidad de Zaragoza
000070771 700__ $$aMiralles, José
000070771 700__ $$0(orcid)0000-0002-0979-2193$$aJesús Martín, Jesús$$uUniversidad de Zaragoza
000070771 700__ $$aSanchez, Fernando
000070771 700__ $$0(orcid)0000-0002-5391-8021$$aBarreras, Félix$$uUniversidad de Zaragoza
000070771 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDepartamento de Ciencia y Tecnología de Materiales y Fluidos$$cMecánica de Fluidos
000070771 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDepartamento de Ciencia y Tecnología de Materiales y Fluidos$$cCiencia de los Materiales e Ingeniería Metalúrgica
000070771 773__ $$g89 (2015), 1-10$$pAppl. therm. eng.$$tAPPLIED THERMAL ENGINEERING$$x1359-4311
000070771 8564_ $$s595272$$uhttp://zaguan.unizar.es/record/70771/files/texto_completo.pdf$$yPostprint
000070771 8564_ $$s75607$$uhttp://zaguan.unizar.es/record/70771/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070771 909CO $$ooai:zaguan.unizar.es:70771$$particulos$$pdriver
000070771 951__ $$a2018-05-23-14:57:02
000070771 980__ $$aARTICLE