000070661 001__ 70661
000070661 005__ 20200221144258.0
000070661 0247_ $$2doi$$a10.1016/j.ijhydene.2015.12.209
000070661 0248_ $$2sideral$$a97097
000070661 037__ $$aART-2016-97097
000070661 041__ $$aeng
000070661 100__ $$aRenau, J.
000070661 245__ $$aDesign and manufacture of a high-temperature PEMFC and its cooling system to power a lightweight UAV for a high altitude mission
000070661 260__ $$c2016
000070661 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070661 5203_ $$aIn the present study, the optimal design of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) that will be used to power an unmanned aerial vehicle (UAV) in a high altitude mission is performed. The use of PEMFCs for service ceiling above 10 km implies overcoming a number of problems caused by the harsh environmental conditions. Among them, new strategies to manage the heat generated by electrochemical reactions are needed. The maximum power required by the UAV was determined solving the aerodynamic problem, and the design of the lightweight HT-PEMFC, including its cooling system, was optimized. To perform the numerical solution of the heat transfer problem, a computational code was implemented using the EES software. The decisions adopted resulted in a 40-cells stack with an electric power above 1 kW and a weight around 3.65 kg. Besides, it is demonstrated that, for the configuration considered in the study, a passive cooling system without any additional fan system can be used to maintain the stack temperature in 160 °C.
000070661 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T03$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2012-38642-C02-01/CON
000070661 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070661 590__ $$a3.582$$b2016
000070661 591__ $$aELECTROCHEMISTRY$$b7 / 29 = 0.241$$c2016$$dQ1$$eT1
000070661 591__ $$aENERGY & FUELS$$b28 / 92 = 0.304$$c2016$$dQ2$$eT1
000070661 591__ $$aCHEMISTRY, PHYSICAL$$b45 / 145 = 0.31$$c2016$$dQ2$$eT1
000070661 592__ $$a1.145$$b2016
000070661 593__ $$aCondensed Matter Physics$$c2016$$dQ1
000070661 593__ $$aRenewable Energy, Sustainability and the Environment$$c2016$$dQ1
000070661 593__ $$aFuel Technology$$c2016$$dQ1
000070661 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ1
000070661 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070661 700__ $$0(orcid)0000-0002-0063-1318$$aBarroso, J.$$uUniversidad de Zaragoza
000070661 700__ $$0(orcid)0000-0003-4141-6072$$aLozano, A.$$uUniversidad de Zaragoza
000070661 700__ $$aNueno, A.
000070661 700__ $$aSánchez, F.
000070661 700__ $$aMartín, J.
000070661 700__ $$0(orcid)0000-0002-5391-8021$$aBarreras, F.$$uUniversidad de Zaragoza
000070661 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000070661 773__ $$g41, 43 (2016), 19702-19712$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000070661 8564_ $$s699486$$uhttps://zaguan.unizar.es/record/70661/files/texto_completo.pdf$$yPostprint
000070661 8564_ $$s68489$$uhttps://zaguan.unizar.es/record/70661/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070661 909CO $$ooai:zaguan.unizar.es:70661$$particulos$$pdriver
000070661 951__ $$a2020-02-21-13:30:51
000070661 980__ $$aARTICLE