000070589 001__ 70589
000070589 005__ 20201130083153.0
000070589 0247_ $$2doi$$a10.1016/j.energy.2016.10.020
000070589 0248_ $$2sideral$$a97051
000070589 037__ $$aART-2016-97051
000070589 041__ $$aeng
000070589 100__ $$0(orcid)0000-0001-9880-5015$$aLara, Y.
000070589 245__ $$aHeat integration of alternative Ca-looping configurations for CO2 capture
000070589 260__ $$c2016
000070589 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070589 5203_ $$aThe best option to overcome the energy penalty in Ca-looping is to take advantage of the surplus heat by external integration to produce additional power and increase net efficiency. As calciner represents the main energy consumption, another possibility is to internally use the surplus heat to preheat the solids entering this reactor. The objective of internal integration is to reduce the energy demand per captured tonne of CO2. It represents a reduction of the coal and oxygen needs and also a total decrease in the CO2 generation regarding the ordinary configuration. However, the amount of available heat for extra power generation by external integration, essential for the viability of this technology, is also reduced. This is the case of the configurations including a cyclonic preheater or a mixing seal valve. This study assess the energy penalty minimization that may be reached by external integration of these internal energy integration configurations. A methodological process has been applied to obtain a reduction of the energy penalty with respect to the ordinary configuration. This energy saving combined with the lower size of equipment and reduced capital cost would make the cyclonic preheater the most suitable configuration to improve the viability of this technology.
000070589 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-45353-R
000070589 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070589 590__ $$a4.52$$b2016
000070589 591__ $$aTHERMODYNAMICS$$b3 / 58 = 0.052$$c2016$$dQ1$$eT1
000070589 591__ $$aENERGY & FUELS$$b17 / 92 = 0.185$$c2016$$dQ1$$eT1
000070589 592__ $$a1.974$$b2016
000070589 593__ $$aBuilding and Construction$$c2016$$dQ1
000070589 593__ $$aCivil and Structural Engineering$$c2016$$dQ1
000070589 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000070589 593__ $$aPollution$$c2016$$dQ1
000070589 593__ $$aIndustrial and Manufacturing Engineering$$c2016$$dQ1
000070589 593__ $$aMechanical Engineering$$c2016$$dQ1
000070589 593__ $$aEnergy (miscellaneous)$$c2016$$dQ1
000070589 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070589 700__ $$aMartínez, A.
000070589 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, P.
000070589 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L. M.$$uUniversidad de Zaragoza
000070589 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000070589 773__ $$g116, Part 1 (2016), 956-962$$pEnergy$$tEnergy$$x0360-5442
000070589 8564_ $$s479447$$uhttps://zaguan.unizar.es/record/70589/files/texto_completo.pdf$$yPostprint
000070589 8564_ $$s63899$$uhttps://zaguan.unizar.es/record/70589/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070589 909CO $$ooai:zaguan.unizar.es:70589$$particulos$$pdriver
000070589 951__ $$a2020-11-30-07:56:30
000070589 980__ $$aARTICLE