000070201 001__ 70201
000070201 005__ 20200221144230.0
000070201 0247_ $$2doi$$a10.1021/acs.chemmater.6b04396
000070201 0248_ $$2sideral$$a97895
000070201 037__ $$aART-2016-97895
000070201 041__ $$aeng
000070201 100__ $$aPanchakarla, L. S.
000070201 245__ $$aStrontium Cobalt Oxide Misfit Nanotubes
000070201 260__ $$c2016
000070201 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070201 5203_ $$aLow-dimensional misfit layered compounds have been found to have ultralow thermal conductivity, which is attributed to their unique structure and the low dimensionality. There are a few studies reporting the preparation of sulfide-based misfit nanotubes but only one study on oxide-based analogs. In this investigation, we report a new oxide-based misfit nanotube derived from misfit layered strontium cobaltite. Thorough structural investigation by electron microscopy techniques, including electron diffraction, aberration corrected high-resolution (scanning) transmission electron microscopy, and electron energy-loss spectroscopy along with density functional theory calculations show that these nanotubes consist of alternating layers of SrCoO2 and CoO2. We have studied systematically the effect of base concentration on the structure and composition of the nanotubes, which reveals the importance of misfit stress to tightly roll the structure into tubular form and thus control the synthesis. Electronic structure calculations find that the structures are semiconducting with a ferrimagnetic ground state. Our studies further extend the family of bulk misfit layered oxides into the 1D realm with potential applications in thermoelectric and electronic devices.
000070201 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-3-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 696656-GrapheneCore1$$9info:eu-repo/grantAgreement/EC/H2020/696656/EU/Graphene-based disruptive technologies/GrapheneCore1$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 642742-Enabling Excellence$$9info:eu-repo/grantAgreement/EC/H2020/642742/EU/Graphene-based nanomaterials for touchscreen technologies: Comprehension, Commerce and Communication/Enabling Excellence$$9info:eu-repo/grantAgreement/EC/FP7/312483/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM 2$$9info:eu-repo/grantAgreement/ES/DGA/E26
000070201 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000070201 590__ $$a9.466$$b2016
000070201 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b15 / 275 = 0.055$$c2016$$dQ1$$eT1
000070201 591__ $$aCHEMISTRY, PHYSICAL$$b12 / 145 = 0.083$$c2016$$dQ1$$eT1
000070201 592__ $$a4.136$$b2016
000070201 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000070201 593__ $$aMaterials Chemistry$$c2016$$dQ1
000070201 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000070201 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070201 700__ $$0(orcid)0000-0001-6152-6784$$aLajaunie, L.
000070201 700__ $$aRamasubramaniam, A.
000070201 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza
000070201 700__ $$aTenne, R.
000070201 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000070201 773__ $$g28, 24 (2016), 9150-9157$$pChem. mater.$$tChemistry of materials$$x0897-4756
000070201 8564_ $$s3170633$$uhttps://zaguan.unizar.es/record/70201/files/texto_completo.pdf$$yPostprint
000070201 8564_ $$s74804$$uhttps://zaguan.unizar.es/record/70201/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070201 909CO $$ooai:zaguan.unizar.es:70201$$particulos$$pdriver
000070201 951__ $$a2020-02-21-13:18:55
000070201 980__ $$aARTICLE