000070177 001__ 70177
000070177 005__ 20190930125518.0
000070177 0247_ $$2doi$$a10.1021/acs.energyfuels.7b00641
000070177 0248_ $$2sideral$$a99891
000070177 037__ $$aART-2017-99891
000070177 041__ $$aeng
000070177 100__ $$aGarcia-Nunez, J. A.
000070177 245__ $$aHistorical Developments of Pyrolysis Reactors: A Review
000070177 260__ $$c2017
000070177 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070177 5203_ $$aThis paper provides a review on pyrolysis technologies, focusing on reactor designs and companies commercializing this technology. The renewed interest on pyrolysis is driven by the potential to convert lignocellulosic materials into bio-oil and biochar and the use of these intermediates for the production bio-fuels, biochemicals and engineered biochars for environmental services. This review presents slow, intermediate, fast and microwave pyrolysis as complementary technologies that share some commonalities in their designs. While slow pyrolysis technologies (traditional carbonization kilns) use wood trunks to produce char chunks for cooking, fast pyrolysis systems process small particles to maximize bio-oil yield. The realization of the environmental issues associated with the use of carbonization technologies and the technical difficulties to operate fast pyrolysis reactors using sand as heating media and large volumes of carrier gas, as well as the problems to refine resulting highly oxygenated oils, are forcing the thermochemical conversion community to rethink the design and use of these reactors. Intermediate pyrolysis reactors (also known as converters) offer opportunities for the large scale balanced production of char and biooil. The capacity of these reactors to process forest and agricultural wastes without much preprocessing is a clear advantage. Microwave pyrolysis is an option for modular small autonomous devises for solid waste management. Herein, the evolution of the pyrolysis technology is presented from a historical perspective; thus, old and new innovative designs are discussed together.
000070177 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000070177 590__ $$a3.024$$b2017
000070177 591__ $$aENGINEERING, CHEMICAL$$b36 / 137 = 0.263$$c2017$$dQ2$$eT1
000070177 591__ $$aENERGY & FUELS$$b40 / 97 = 0.412$$c2017$$dQ2$$eT2
000070177 592__ $$a1.159$$b2017
000070177 593__ $$aChemical Engineering (miscellaneous)$$c2017$$dQ1
000070177 593__ $$aFuel Technology$$c2017$$dQ1
000070177 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1
000070177 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/submittedVersion
000070177 700__ $$aPelaez-Samaniego, M. R.
000070177 700__ $$aGarcia-Perez, M. E.
000070177 700__ $$0(orcid)0000-0001-7035-1955$$aFonts, I.$$uUniversidad de Zaragoza
000070177 700__ $$0(orcid)0000-0003-4493-6540$$aAbrego, J.$$uUniversidad de Zaragoza
000070177 700__ $$aWesterhof, R. J. M.
000070177 700__ $$aGarcia-Perez, M.
000070177 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000070177 773__ $$g31, 6 (2017), 5751-5775$$pEnergy fuels$$tEnergy and Fuels$$x0887-0624
000070177 8564_ $$s2174098$$uhttps://zaguan.unizar.es/record/70177/files/texto_completo.pdf$$yPreprint
000070177 8564_ $$s89553$$uhttps://zaguan.unizar.es/record/70177/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000070177 909CO $$ooai:zaguan.unizar.es:70177$$particulos$$pdriver
000070177 951__ $$a2019-09-30-12:51:39
000070177 980__ $$aARTICLE