Improving the distillate prediction of a membrane distillation unit in a trigeneration scheme by using artificial neural networks
Resumen: An Artificial Neural Network (ANN) has been developed to predict the distillate produced in a permeate gap membrane distillation (PGMD) module with process operating conditions (temperatures at the condenser and evaporator inlets, and feed seawater flow). Real data obtained from experimental tests were used for the ANN training and further validation and testing. This PGMD module constitutes part of an isolated trigeneration pilot unit fully supplied by solar and wind energy, which also provides power and sanitary hot water (SHW) for a typical single family home. PGMD production was previously estimated with published data from the MD module manufacturer by means of a new type in the framework of Trnsys® simulation within the design of the complete trigeneration scheme. The performance of the ANN model was studied and improved through a parametric study varying the number of neurons in the hidden layer, the number of experimental datasets and by using different activation functions. The ANN obtained can be easily exported to be used in simulation, control or process analysis and optimization. Here, the ANN was finally used to implement a new type to estimate the PGMD production of the unit by using the inlet parameters obtained by the complete simulation model of the trigeneration unit based on Renewable Energy Sources (RES).
Idioma: Inglés
DOI: 10.3390/w10030310
Año: 2018
Publicado en: Water (Basel) 10, 3 (2018), 310 [21 pp]
ISSN: 2073-4441

Factor impacto JCR: 2.524 (2018)
Categ. JCR: WATER RESOURCES rank: 29 / 91 = 0.319 (2018) - Q2 - T1
Factor impacto SCIMAGO:

Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2014-59947-R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2019-07-09-12:50:04)

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Máquinas y Motores Térmicos



 Registro creado el 2018-04-20, última modificación el 2019-07-09


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)