000069934 001__ 69934
000069934 005__ 20210125144518.0
000069934 0247_ $$2doi$$a10.1109/TBME.2018.2821182
000069934 0248_ $$2sideral$$a105386
000069934 037__ $$aART-2018-105386
000069934 041__ $$aeng
000069934 100__ $$0(orcid)0000-0002-1297-0691$$aKontaxis, Spyridon$$uUniversidad de Zaragoza
000069934 245__ $$aAssessment of quadratic nonlinear cardiorespiratory couplings during tilt table test by means of real wavelet biphase
000069934 260__ $$c2018
000069934 5060_ $$aAccess copy available to the general public$$fUnrestricted
000069934 5203_ $$aIn this paper a method for assessment of Quadratic Phase Coupling (QPC) between respiration and Heart Rate Variability (HRV) is presented. Methods: First, a method for QPC detection is proposed named Real Wavelet Biphase (RWB). Then, a method for QPC quantification is proposed based on the Normalized Wavelet Biamplitude (NWB). A simulation study has been conducted to test the reliability of RWB to identify QPC, even in the presence of constant delays between interacting oscillations, and to discriminate it from Quadratic Phase Uncoupling. Significant QPC was assessed based on surrogate data analysis. Then, quadratic cardiorespiratory couplings were studied during a tilt table test protocol of 17 young healthy subjects. Results: Simulation study showed that RWB is able to detect even weak QPC with delays in the range of 0 - 2 s, which are usual in the Autonomic Nervous System (ANS) control of heart rate. Results from the database revealed a significant reduction (p<0.05) of NWB between respiration and both low and high frequencies of HRV in head-up tilt position compared to early supine. Conclusion: The proposed technique detects and quantifies robustly QPC and is able to track the coupling between respiration and various HRV components during ANS changes. Significance: The proposed method can help to assess alternations of nonlinear cardiorespiratory interactions related to ANS dysfunction and physiological regulation of HRV in cardiovascular diseases.
000069934 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/TIN2014-5356-R$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 745755-WECARMON$$9info:eu-repo/grantAgreement/EC/H2020/745755/EU/Wearable Cardiorespiratory Monitor/WECARMON$$9info:eu-repo/grantAgreement/ES/DGA/T96
000069934 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000069934 590__ $$a4.491$$b2018
000069934 591__ $$aENGINEERING, BIOMEDICAL$$b11 / 80 = 0.138$$c2018$$dQ1$$eT1
000069934 592__ $$a1.256$$b2018
000069934 593__ $$aBiomedical Engineering$$c2018$$dQ1
000069934 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000069934 700__ $$0(orcid)0000-0001-8742-0072$$aLázaro, Jesús$$uUniversidad de Zaragoza
000069934 700__ $$0(orcid)0000-0001-7285-0715$$aGil, Eduardo$$uUniversidad de Zaragoza
000069934 700__ $$0(orcid)0000-0003-3434-9254$$aLaguna, Pablo$$uUniversidad de Zaragoza
000069934 700__ $$0(orcid)0000-0003-1272-0550$$aBailón, Raquel$$uUniversidad de Zaragoza
000069934 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát.
000069934 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000069934 773__ $$g66, 1 (2018), 187-198$$pIEEE trans. biomed. eng.$$tIEEE Transactions on Biomedical Engineering$$x0018-9294
000069934 8564_ $$s1007458$$uhttps://zaguan.unizar.es/record/69934/files/texto_completo.pdf$$yPostprint
000069934 8564_ $$s144583$$uhttps://zaguan.unizar.es/record/69934/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000069934 909CO $$ooai:zaguan.unizar.es:69934$$particulos$$pdriver
000069934 951__ $$a2021-01-25-14:37:57
000069934 980__ $$aARTICLE