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Resumen

Este proyecto se centra en el uso de dispositivos de microelectrodos MEAs (Multi
Electrode Arrays) de ultima generacion para el estudio y la manipulacion de re-
des neuronales en cultivo. Chips MEA, con 26400 electrodos situados en una
superficie de 3.85 x 2.10 mm?, fueron utilizados para registrar la actividad eléc-
trica de dos cultivos de neuronas corticales disociadas obtenidas de embriones
de rata. En las mismas plataformas MEA, se implement6 un protocolo de es-
timulacién en bucle cerrado, de manera que se pudieran enviar pulsos eléctricos
de estimulaciéon a determinados electrodos en respues a potenciales de accién
detectados en otro electrodo. Uno de los cultivos de neuronas fue sometido al
protocolo de estimulacién en bucle cerrado mientras que el segundo cultivo fue
utilizado como control. Se desarrollaron diferentes métodos con el fin de hacer
una caracterizacion funcional de los cultivos. El anélisis funcional de los reg-
istros obtenidos en los experimentos indican que la estimulacién en bucle cerrado
provocé perdidas significativas y generalizadas de actividad y conectividad en
la red neuronal en cultivo.



Abstract

This project focuses on the use of a state of the art microelectrode array (MEAs)
chip for the study and manipulation of cultured neural networks. MEA chips
containing 26400 electrodes arranged on a sensing area of 3.85 x 2.10 mm? were
used to obtain electrical recordings from two cultures of dissociated cortical neu-
rons from pre-natal rats. A closed-loop stimulation protocol was implemented
on the MEA platforms so that stimulation pulses could be delivered to a de-
termined electrode on the array in response to action potentials detected on
another electrode. One of the neuronal cultures was subjected to a closed-loop
stimulation protocol whereas the second one was used as a control. Several
different metrics were implemented and applied to the recordings in order to
perform a functional characterization of the cultures. The functional analy-
sis of the recordings obtained in the stimulation experiments indicates that the
closed-loop stimulation induced a significant and generalized loss of activity and
connectivity in the cultured neuronal network.
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1 Introduction

The goal of this project was to implement and study the effects of a closed-loop
stimulation protocol on cultured neural networks, with the aim of developing a
methodology capable of inducing reproducible modifications of the network pa-
rameters. More broadly, the project made use of state of the art microelectrode
array (MEA) chips to monitor and analyze the activity of neural networks de-
veloped in vitro. The same MEA chips were then used to automatically deliver
stimulation pulses in response to the network’s activity (closed-loop stimula-
tion).

The project builds upon the successful implementation and use of closed-loop
stimulation protocols on earlier versions of the MEA chips [1] and represents an
innovative approach in its scope, trying to analyze and modify the behavior of
the neuronal culture at the network level rather than focusing on single pairs of
cells.

1.1 Overview

The thesis is organized as follows: The rest of this section provides an introduc-
tion to the electrophysiological study of neurons, the study of neural networks
in vitro and the MEAs technology. The methods section describes in detail the
approach taken in the development of this work, specifying how the neurons
were obtained and cultured, how the recordings were performed, which tech-
niques were employed to examine and characterize the neuronal cultures, how
the stimulation protocol was implemented and the imaging technique used to
observed the networks. The results section describes the outcome of the ex-
periments. The discussion section provides insight on the results, proposing
explanations for the observations and suggesting future experiments. Finally,
the conclusion section summarizes the outcome of the study.

1.2 Motivation

The impairment of neuronal function at the cellular or network levels is linked to
a wide range of disorders and diseases. For instance, epilepsy is associated with
a specific behavior of the neurons in which they produce repetitive synchronous
electrical discharges (bursting) [2]; defects in synaptic transmission [3, 4] and
altered balances in the number or strength of inhibitory and excitatory synapses
[5, 6, 7, 8] have been identified as a possible causes of autism spectrum disor-
ders; and Parkinson’s disease has been related to an impairment of midbrain
dopamine neurons to synthesize and release dopamine [9].

The use of MEAS for the analysis and stimulation of neural cultures in disease
models has already shown promising results in the understanding and treatment
some neurological disorders [10, 11]. In particular, closed-loop stimulation pro-
tocols applied through MEAs has proven effective in neurorehabilitation [12]
and to mitigate epileptic seizures [13, 11, 14] and Parkinsonism [15]. Addition-
ally, MEAs are an excellent system for drug discovery and basic neuroscience



research [16, 17, 18] and are a key component for state of the art brain-machine
interfaces [19, 20], including their clinical applications [21, 22]. The advent of
new MEA platforms with unprecedented electrode density [23, 24] can push
such applications further by providing the ability to both observe and stimulate
neurons at multiple scales, from sub-cellular to network levels. It is therefore
imperative to develop and establish methodologies that take advantage of these
new platforms to study and modify in vitro neuronal cultures.

1.3 Electrophysiological study of neural networks

Neurons are a highly specialized cell type found in the nervous system of all
vertebrates and most invertebrates. In the human brain, neurons are respon-
sible for information processing and transmission. The physiology of neurons
allows them to achieve these tasks through a combination of chemical and elec-
trical mechanisms, which are used by the cells to form intricate communication
networks [25].

The physiology of human neurons is rather diverse, as they can be classified
into several types according to their structure. However, they all present a cell
body which contains the nucleus (soma) and a several protrusions (neurites) that
can be classified as axons and dendrites. Axons are elongated extensions of the
cell body which behave as highly efficient conducts for electrical signals whereas
dendrites are extensions that connect to the axons of other cells forming synapses
[26]. The presence of voltage-triggered ion channels allows neurons to maintain a
differential electrical potential across their membranes. This potential changes
as a function of the concentrations of ions on both sides of the membrane,
which can be modified by the cell in response to incoming chemical or electrical
signals. Either as a result of the integration of these incoming signals or as
a spontaneous process, neurons can generate a specific type of electrical pulse
known as action potential (AP). The AP consists of a strong and rapid drop
followed by a sudden increase in the cell membrane potential that is propagated
along the axon. The shape of the AP is caused by a determined sequence of
activation and inactivation of different ion channels (Figure 1) [27].

Action potentials, also referred to as spikes, are one of the main mechanisms
used by neurons to communicate with one another. Therefore, monitoring the
membrane potentials to detect spikes is key to understanding how information
is being transmitted and processed in neural networks.
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Figure 1: Hodgkin-Huxley model of action potential. The purple lines show
the conductance of Na+ and K+ ions, expressed in number of channels. The
membrane potential resulting from the conductance of these two ions in the
model is shown in red. The shape of the AP appears as a result of the sequential
opening of voltage-gated Na+ and K+ channels. Reproduced from [27]

1.3.1 Electrophysiological techniques

There are different techniques in which electrodes can be used to observe the
membrane potentials. Depending on the location of the electrodes with re-
spect to the cell, these techniques can be classified into three groups: intracel-
lular recordings, in which the electrode is placed inside the cell, patch clamp
recordings, in which the electrode is placed adjacent to the cell membrane, and
extracellular recordings, in which the electrode is nearby the cell. Although
intracellular and patch clamp recordings provide the most direct and precise
measures, they are technically challenging and limited in scope. The electrodes
are placed in glass micropipettes that need to be manually placed in the desired
location (with the help of microscopes and micromanipulators), allowing to act
on a single cell at a time. Additionally, these techniques are harmful to the cells,
and thus neurons survive only for a few hours after the electrodes is inserted
[28].

On the other hand, extracellular recordings [29] provide less accurate mea-
sures of the membrane potential but offer dramatic technical advantages. The
electrodes do not need to be positioned so precisely and the procedure does not
damage the cells, working through a non-invasive contact with the cell mem-
brane that allows long-term recordings. Thus instead of a single micropipette,
it is also possible to use arrays of microelectrodes to perform these recordings,
providing information on ensembles of neurons rather than on a single one.
Therefore, extensive work has been done on the development of techniques for
the fabrication of multi-electrode arrays, moving from stereodes [30] to tetrodes
[31, 32], multi-channel platforms [33] and finally high density microelectrode



arrays [23, 24], with the number of simultaneously recorded neurons growing
exponentially over the past few decades[34]. These platforms have been exten-
sively used for a variety of applications both in vivo [35, 36, 37, 38, 39, 21] and
in vitro [40, 41, 42, 43, 44, 45].

1.3.2 MEASs for in vitro studies

Using planar MEAs coated with cell-adhesion substrates, it is possible to cul-
tivate neurons directly on top of the arrays. The transmembrane ion currents
cause changes in the extracellular electric fields which are detected as the po-
tential difference between the plasma membrane and the extracellular reference
electrode. The level of the potential varies depending on the distance from the
cell to the recording site and magnitude of the transmembrane current [18, 46].
The principles of the planar electrodes recordings are presented schematically
in Figure 2.
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Figure 2: A) Schematic of a cell attached to a sensor surface. A cell featuring
ion channels sits on a planar microsensor. Moving ions in the electrode vicinity
generate an electric field or voltage that is recorded by the microsensor. B)
Electrical equivalent circuit of a membrane adjacent to a sensor. The equivalent
model relies on the Hodgkin-Huxley model of the squid axon [27]. The electrode
is represented by a capacitor and a resistor in parallel. C) Intracellular neuronal
signal recorded by using the patch-clamp technique and an extracellular signal
recorded by means of a metal electrode. Reproduced from [46].



The design challenge in this type of arrays is to offer a high electrode density,
(so that it is possible to monitor an increasing number of cells at sub-cellular
resolution) while providing a high signal-to-noise ratio (SNR). Passive MEAs,
which typically consist of metal electrodes on a glass substrate, are limited in
both the number of electrodes (usually less than 300) and the spatial resolution
(typically 30 > um) [24]. The use of complementary metal-oxide-semi-conductor
(CMOS) technology enables the increase of the electrode count, from dozens to
tens of thousands of electrodes, dramatically enhancing the spatial resolution.
The MEAs that take advantage of this technology have a high electrode density
and are referred to as HD-MEAs [46].

In order to increase the SNR, it is necessary to use amplifiers which are
larger than the area covered by an electrode. The amplifiers have to be placed
on-chip, since placing the electrodes off-chip introduces parasitic signals and
interferences. As aresult, the chips contain less amplifiers (and therefore readout
channels) than electrodes.This approach presents a connectivity challenge, since
not all electrodes can be connected to amplifiers at the same time and it is
necessary to route a subset of them to the readout channels. CMOS technology
allows the implementation of transistors under the electrodes. These transistor
can act as switches that can be used to route the signal from a selected group
of electrodes to the amplifiers, implementing what is known as a switch matrix
[47] and solving the connectivity problem.

The current alternative to these approaches are active pixel sensor (APS)
MEAs [48, 49, 50]. These arrays work in a manner similar to image sensors
used in cameras, allowing all electrodes to be sampled at fast speeds in full-
frame readout. This offers great spatial resolution, however it imposes a limit
on the size of the amplifiers, which consequently reduces the SNR and therefore
limits the size of the signals that can be distinguished from noise.

The “MEA1K” chip developed at the BEL [23, 24] consist of MEA that makes
use of both the CMOS and switch matrix technologies and a printed circuit
board (PCB) which provides connectivity to the array. The microelectrode
array has 26,400 electrodes at a pitch of 17.5um, covering an area of 3.85 X
2.1 mm?. It has 1024 readout channels, which can also be used as stimulation
channels to deliver electrical pulses. The electrodes are sampled with 10-bit
resolution at a rate of 20kHz, so that when all 1024 channels are routed to
electrodes the chip outputs 24MB of data per second.

A second PCB (MEA board) provides power to the circuitry on the chip and
acts a bridge between the chip and a FPGA board. The FPGA itself acts as the
interface between a host computer and the MEA board. The FPGA provides
bi-directional communication: on one side it acquires the raw data data coming
from the board and sends it to the host computer and, on the other, it sends
the configuration commands for the electrode routing from the host computer
to the board. The MEA1K chip, together with the MEA board and the FPGA
board conform a complete system capable of obtaining extracellular recordings
from cultures placed on top of the chip.
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1.3.3 In vitro studies of neural networks

Using HD-MEAs, it is possible to record signals from virtually all the neurons in
a cultured network. However, the analysis of such signals allowing to reconstruct
and understand the functional network existing in the culture is not trivial
and presents a number of technical challenges [51]. First, it is necessary to
detect and classify the detected APs or spikes (assigning each to a neuron),
in a process known as spike sorting [52]. Secondly, the firing regimes of the
neurons need to be analyzed. The behavior of neurons can be separated into
tonic firing and bursts. In the first one, the neuron fires well spaced spikes,
so that the resting potential is reached after each one. During bursts, the
neuron fires repeatedly, reducing the interval between APs and exhibiting altered
waveforms (usually showing a progressive decrease in amplitude) [53]. Bursts
also happen as network-wide events, that is, network bursts, during which most
of the neurons in the culture fire with a very high frequency. The detection and
analysis of these events has been shown to be very relevant for characterizing in
vitro neural networks [45, 54]. Lastly, it is necessary to study the relationships
between the sequences of spikes (called “spike trains”) from the different neurons
to understand the connectivity between the cells [55].

None of the steps in this analytic process has a fully established methodol-
ogy yet. The detection of spike events is usually done using a threshold-based
method. However it has been disputed whether if this method is reliable when
applied to superimposed signals from multiple neurons (as it happens in HD-
MEAs) [52]. Neurons present dynamic behaviors, with non-stationary wave-
forms that change in shape and size, which makes the spike classification a
complex task. Moreover, the large volumes of data obtained from HDMEAs
and the number of cells present of a cultured network, make it hardly feasible
to have a manual classification. Therefore, a large number of different methods
using different approaches have been developed for the automatic classification
of spikes [56, 57, 58, 59].

The definition of what constitutes a burst or a network bursts in a recording
are not entirely settled. Thus, also a number of different methods have been
developed for burst detection. They are mainly based on either the analysis
of inter-spike intervals of single neurons or on the frequency of spike events
in whole populations [60, 61, 54, 62]. Similarly, it is not yet resolved how
to compute the functional connectivity in a neural network based on MEAs
recordings. Some methods propose the use of different correlation metrics [55,
63|, whereas others have proposed the use of information-theoretic metrics such
as the transfer entropy [64, 65]. Lacking a ground-truth for the connectivity
of large ensembles of neurons, it is still hard to discard any of the proposed
methods.

Despite the lack of standardized analysis methods and the diversity of the
available MEAs, already a myriad of successful studies have been performed
using microelectrode arrays to analyze different aspects of cultured neural net-
works: from electrical identification and stimulation of sub-cellular compart-
ments [66], to the analysis of network-theoretic properties of neural networks
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[67], memory and plasticity [68] or the characterization of developmental stages
[45]. Therefore the MEA technology has already demonstrated to be mature
and useful for the study of neural networks in vitro.
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2 Methods

In the development of this project, two sets of pre-natal rat dissociated neurons
were plated on MEA1K chips. These neurons were cultured and monitored
for activity throughout their development. At 22 days in vitro (DIV), one
of the cultures was subjected to a closed-loop stimulation protocol, delivered
through the same chip in which they it was grown. The second culture was
used as a control to monitor the magnitude of the spontaneous changes. The
same stimulation protocol was repeated at 26 DIV. Both at 22 and at 26 DIV,
three recordings were obtained from each culture: an initial recording to use as
baseline, a second recording done after one hour to use as a blank and reveal the
spontaneous short-term changes, and a third recording done after the application
of the stimulation.

2.1 MEAs

The recording and stimulation of neurons was performed using two MEA1K
chips as part of an extracellular recording setup. The chips have a total of 26,400
electrodes of which 1024 can be connected to readout channels simultaneously.
The routing that connects a set of electrodes to a set of readout channels is
referred to as a configuration.

The electrodes can be directly exposed to the cells and the cell culture media,
however, the rest of the chip needs to be protected from having contact with
the liquids used in the cell culture process. In order to do so, the area around
the electrode array is covered with epoxy in a process called packaging. The
cells plated on top of the electrodes need to be covered with media, thus a glass
ring was placed around the electrode array, allowing to accommodate a volume
of 72ml. The chips before and after the packaging process are shown in Figure
3. The full packaging protocol is presented in detail in Annex I (6.1).
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Figure 3: MEA1K chip before (top) and after (bottom) packaging.

2.2 Cell cultures

Cortical neurons were obtained from Wistar rat embryos (at embryonic day 18,
E18). A total of 6 embryos were first surgically removed from a pregnant rat.
The brains were dissected, isolating the cortices which were then dissociated en-
zymatically in trypsin followed by mechanical trituration. After removing the
debris and resuspending the cells in plating media (Neurobasal supplemented
with 10% horse serum), the concentration of cells was estimated using an hemo-
cytometer under the microscope.

To ensure the adhesion of the neurons to the surface of the electrode arrays
and to improve the survivality of the cultures, the electrode arrays were cleaned
with ethanol and then treated with polyethylenimine (PEI) and laminin. After
cleaning them with ethanol and letting them dry, the electrodes were covered
with 100ul of PEI to increase the hydrophobicity of the surface. After 60 min-
utes, the PEI droplet was removed with an aspirator and the electrodes were
washed three times with 1ml of sterile water. Then a droplet of 10u!l of laminin
was added on top of the center of the array, to increase cell adhesion. The
laminin was incubated for 20 minutes at 37 degrees and then partially removed.
Afterwards, 40000 cells were plated by placing a droplet of the cell suspension
on top of the electrodes. The plated chips were placed in the incubator at 37
degrees in order to allow the cells to attach to the laminin. Subsequently, 1ml
of plating media was added. After two days, the plating media was replaced
by Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% horse serum. The
DMEM media was kept fresh by replacing half of its volume twice a week.
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2.3 Electrode selection

The MEA1K chip contains a total of 26400 electrodes, however it is only possible
to record from a total of 1024 of them. In order to maximize the amount of
information about the neuronal networks cultured on top of the chips, it was
necessary to decide which subset of electrodes to record from. In order to do
show, the whole array was scanned by making 1 minute recordings of different
configurations, so that in the end a one-minute recording from each electrode
was available. These short recordings provided information that was used to
decide which electrodes were most suitable ones.

The recordings from the scan were filtered using a band-pass filter to isolate
the frequencies between 300 and 7000 kHz. APs were detected using the MAT-
LAB peak detection function. On each channel, the peaks larger than 5.5 times
the standard deviation of the signal were considered as valid APs. The peaks
were required to be spaced, so after a detection the peaks in the next 20 samples
were ignored. The 10 samples prior to the APs and the 20 samples after them
were stored as the waveforms associated with the AP.

Based on the detected APs, four features were computed for each electrode:
firing rate, average peak amplitude, peak amplitude deviation and waveform
deviation. The firing rate was calculated as the total number of APs detected
divided by the recording time in seconds. The peak amplitude deviation was
meant to reflect the variation in the AP amplitude caused by the cells that
generate them. This measure was intended to discriminate between electrodes
whose signal source was a single cell and those that were recording signals from
multiple neurons. The deviation in the amplitude of the detected peaks can be
described as the sum of three components:

oA =0N +0c +o0y, (1)

where oy is the deviation due to the random noise of the signal, o¢ is the
deviation associated to the cell and o; is the deviation caused by the jitter.
Taking the assumption that the high sampling frequency would make o in-
significant in comparison with the other two sources of deviation and that oy
can be estimated by the standard deviation of the signal, o can be estimated
as

Oc =0A —ON. (2)

Since the deviation in the peak amplitude is expected to the proportional to
the magnitude of the peak amplitude (i.e. larger peaks are expected to produce
larger deviations), the o¢ values from each electrode were divided by the average
amplitude of the peaks observed in the same electrode. The waveform deviation
was computed as the mean standard deviation of the whole waveform for all the
waveforms collected on each electrode.

Having computed these four features, the electrodes was done in three steps:
first, the electrodes with the 10% largest amplitudes and activity above 2 peaks
per second were chosen and the rest discarded. Then, the electrodes on this
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initial selection were then ranked according to the harmonic average of their
deviation in peak amplitude and waveform deviation. The first 1024 electrodes
on the ranking were used as an initial selection. Finally, the selection was
populated to ensure that no isolated electrodes were present. Whenever an
electrode was found to have less than 2 neighboring electrodes also included in
the selection, its four neighbors (the electrodes above, below, left and right) were
added to it. If this caused the selection to contain more than the 1024 possible
channels, the initial selection was shortened and the process was repeated until
the selection contained 1024 non-isolated electrodes. In the rest of the text this
selection method is referred to as the deviation-based method.

The quality of the selection was assessed by manually sorting selected elec-
trodes using the UltraMegaSort 2000 program [69, 70, 71], with the intention of
verifying qualitatively that the electrodes captured signals that could be clearly
separated and classified.

2.4 Spike Sorting

In order to identify the number of different cells present in a MEA recording
and to assign each action potential to a cell, it is necessary to spike sort the
data. The basic and most common approach for spike sorting in MEAs is to
i) perform a threshold-based spike detection, ii) extract the spike waveforms
i.e. the signals around the spike times, iii) obtain the most relevant features
of the waveforms by dimensionality reduction with principal component anal-
ysis (PCA) and iv) cluster the waveforms based on their projections along the
relevant PCs, assigning each spike to a unit or putative neuron [52, 72, 73].
Although this is an effective method for MEAs with low electrode counts, it
cannot be directly applied to HD-MEAs such as the MEA1K.

The high electrode count of the HD-MEAs causes three problems that pre-
vent common spike sorting techniques from working effectively: firstly, if all the
electrodes are considered for the spike waveform extraction, the feature space of
the waveforms becomes enormous, making the process of feature extraction and
classification much harder (a phenomena known as the “curse of dimensional-
ity” [74], common to many domains); secondly, with these devices it is common
to record spikes with temporal overlaps; and finally, the vast amount of data
makes manual supervision of the sorting process nearly impossible and imposes
the need for fully automated methods.

In order to overcome these problems, a new method was proposed by Diggel-
mann et al. [75, 76]. This new approach, implemented in a program named
MySort, subdivides the electrodes in groups based on their spatial location,
performs entirely automated sorting on each group and then merges the results
removing redundant units. Briefly, the method works through the following
steps:

1. -Subdivision into Local Electrode Groups (LEG): First the electrodes are
separated in groups of at most 9 electrodes. Each electrode is assigned to
at least one LEG, with the aim of grouping together neighboring electrodes
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while keeping the total number of groups and the overlaps to a minimum.

. Spike detection and waveform analysis: The action potentials are detected
using a threshold defined on the basis of the standard deviation of the noise
on each channel. The precise spike time is defined as the point within an
short interval At after threshold crossing in which the signal reaches its
maximum amplitude. After detection, the waveforms are extracted from
all electrodes in the same LEG yielding a vector containing the multi-
electrode waveform for each spike.

. Feature Selection and Clustering: A random subset of spikes is used to de-
fine the putative neurons on each LEG. The multi-electrode waveforms of
the spikes are first pre-whitened to approach the distributions of each fea-
ture to a standard normal distribution, as described in Franke et al. and
Pouzat et al. [57, 77]. The waveforms are then subjected to a principal
component analysis (PCA) for dimensionality reduction. The projections
on the first principal components are used as the defining features of the
spikes, which are clustered using mean-shift clustering [78]. Each of the
resulting groups or clusters represent the signals emitted by different puta-
tive neurons. Those clusters containing less spikes than a given threshold
are discarded to prevent outliers from creating a separated group on their
own.

. Template Matching: The averaged multi-electrode waveform on each clus-
ter is used as the template for each putative neuron. All the spikes are
compared against the existing templates on the corresponding LEG and
assigned to the one which they resemble the most.

. Cluster merging: Once each spike is assigned to a template, the templates
are re-calculated by computing the average waveforms. This is done con-
sidering all the assigned spikes, instead of only the ones present in the
initial random subset. This process provides more reliable templates, as
these are obtained from more samples. The templates are then compared
to each other and merged if their similarity is higher than a certain thresh-
old. This is done iteratively, re-computing the templates of any two groups
that are merged and comparing the newly obtained templates until no
groups can be merged.

. Duplicate resolution: Cells with large signals that spawn across distant
electrodes or whose signal is picked up by electrodes at the intersection
of two LEGs can generate duplicates, i.e. putative neurons detected on
different LEGs that correspond to a single real neuron. In order to remove
these duplicates, the templates obtained from the different LEGs are com-
pared, both in terms of their waveforms and their spike trains (the time
series of their spike events). Those templates with high similarity are con-
sidered redundant, and in these cases only the template with the largest
signal amplitude is kept.
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The result of this spike sorting process is a list of detected units or neurons and
the assignment of each detected spike to one of the neurons on the list. In the
text below, the terms unit and neuron are used interchangeably to refer to the
putative neurons detected by the MySort method.

2.4.1 Quality assessment

The quality of the sorting was determined by obtaining statistics on the behavior
of each of the detected units. For each unit, the estimated number of missing
spikes, the firing rate, the percentage of refractory period violations (RPVs) and
the distribution of spike amplitudes were considered.

To obtain the estimated number of missing spikes for each unit, first a nor-
mal distribution was centered at the mode of the distribution of amplitudes.
Assuming that the normal distribution represents a good estimate of the real
distribution of amplitudes, the part of the distribution that fell below the AP
detection threshold (5.5 times the standard deviation) represents the spikes that
were not detected due to their low amplitude. The same normal distribution
was used to estimate the percentage of spikes outside the p + 30 range, indi-
cating how well the actual distribution of spike amplitudes fitted to a normal
distribution. The percentage of RPVs was calculated as the percentage of inter
spike intervals (ISIs) below a 3ms threshold.

A threshold was used for each of these characteristics, so that units with
more than 10% estimated missing spikes, more than 5% RPVs, more than 10%
of spikes outside the p 4+ 30 range or with a firing rate smaller than 0.5 spikes
per second were discarded.

2.5 Characterization

According to the study by Muller et al. [1], the closed-loop stimulation protocol
was expected to alter the connectivity of the neural network. However, a whole
set of additional features were computed on each culture so that other possible
effects of the stimulation could be observed. These features are divided into
four categories: basic features, bursting behavior, connectivity, network proper-
ties. The statistical significance of the differences in each of these features was
ultimately assessed using a Mann-Whitney U test [79] (oo = 0.05).

2.5.1 Basic features
On each culture, the firing rate, mean amplitude and amplitude standard devi-
ation were calculated for each of the detected neurons.

2.5.2 Bursting behavior

In order to detect bursting periods, the following method was implemented: the
spike trains of all the detected neurons were combined and binned into bins of
50ms. The resulting spike frequencies were smoothed with a Gaussian kernel.
The distribution of smoothed spike frequencies was then modeled as a mixture
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of two Gaussian distributions, representing tonic firing and bursting regimes.
The Gaussian distribution with higher frequencies was used to set thresholds for
network burst detection. All time bins with frequencies higher than the mean of
the high-frequency Gaussian minus one standard deviation were initially labeled
as network bursts. These network bursts were merged whenever the distance
between them was sorter than 120ms. After merging, the bursts shorter than
100ms or with less spikes than half the number of detected units, were discarded.

Using the network-bursting periods, the following features described by Cot-
terill et al. [45] were computed:

e Burst rate: bursts per minute.
e Burst duration: duration of each burst in seconds.

e Within-burst firing rate: mean firing rate within all bursts, in spikes per
second.

e Coefficient of variation (CV) of Inter burst intervals (IBI): ratio between
the standard deviation and the mean of the lengths of the IBIs.

Additionally, in order to further examine the bursts, the following features were
computed:

e IBIs: list of all IBIs in seconds.
e Bursts sizes in number of spikes.

e Bursts sizes in number of neurons involved.

2.5.3 Connectivity

The connectivity between the detected neurons was examined using two different
surrogate measures:

e Summation over spike trains cross-correlograms defined by P. Dayan and
L.F. Abbott [80]

¢ Spike Time Tiling Coefficient, developed by Cutts and Eglen [55]

Both of these measures were normalized by harmonic averages of the firing
rates for each pair of neurons, in order to reduce their dependency with the
activity levels of the neurons. The connectivity was assessed using only the
spikes observed outside the bursting periods, in order to avoid accounting the
participation in network bursts as functional connectivity.

2.5.4 Network properties

In order to examine the network properties, the Brain Connectivity Toolbox
[81] was used to compute basic centrality measures (in-degree, out-degree) and
to measure the modularity of the network.
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The usefulness of these measures extends beyond this study and can po-
tentially be applied to any recording done on a MEA platform. Therefore the
MATLAB code developed to implement these measures was made available pub-
licly through GitHub [82] at https://github.com/leo-gg/neurofun.

2.6 Closed-loop Stimulation

The basic principle in the closed-loop stimulation is that an electrical pulse is
delivered through one of the channels on the MEA1K chip when an determined
event (usually an AP) is detected on another channels. The channels are referred
to as stimulation and readout respectively. In this case this was achieved by
linking the hardware filter present on the FPGA to the stimulation channel in
the MEA1K chip. The C++ interface for the MEA1K was modified to include
commands for i) selecting the detection channel (readout), ii) setting the peak
detection threshold, iii) activating the closed-loop, iv) setting the refractory
period for the detection after the stimulation and v) setting the desired delay
between detection and stimulation.

On top of the C++ FPGA interface, a Python script was developed to im-
plement a specific stimulation protocol. The Python script contained commands
to specify the channel routing (so that the desired electrode configuration was
used), the readout and stimulation channels, the detection parameters for the
hardware filter and the stimulation parameters, which described the stimulation
pulses shape, width and amplitude. The complete python script used for the
closed-loop stimulation is provided in Annex II (6.2).

Initially the AP detection through the hardware filter was done by first es-
timating the standard deviation of the signal in the readout channel and then
using a threshold of 5.5 times the standard deviation value to identify APs. How-
ever, the resolution of the hardware filter was found out to be very poor, thus
no proper estimation of the channel standard deviation could be one. Instead,
it was observed that a clear threshold between noise and high amplitude peaks
existed (see figure 4) and thus a value of -200 bits was used as a fixed threshold.
The stimulation pulse used was a biphasic quadratic pulse, first negative and
then positive, with an amplitude of 61.53mV and a width of 8 samples.
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Figure 4: Trace obtained from the hardware filter. The blue line indicates the
amplitude of the output signal from the filter. The dashed line in black marks
the threshold set for peak detection. The low-resolution filter causes the noise
to appear as low amplitude peaks (below -200 bits). Actual APs are seen a very
large amplitude deflections.
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3 Results

3.1 Deviation-based electrode selection improves over cur-
rent methods

The deviation-based method implemented here for the selection of electrodes on
the MEA allowed to obtain recordings capturing strong, clean signals. Figures
5, 6 and 7 show the AP waveforms of the best electrodes selected according to
different criteria. As it can be seen in Figures 5 and 6, the most active channels
and the ones with the largest amplitudes contained noisy non-homogeneous
waveforms. On the other hand, as shown in Figure 7, the electrodes ranking
highest according to the deviation-based method present uniform waveforms
with low noise levels.

The sorting process involved evaluating the footprints of the neurons, for
which their waveforms need to be observed in several electrodes. Thus, record-
ing from isolated electrodes impairs the sorting process. In order to avoid this
problem, the initial selections were populated with neighboring electrodes. On
the first trial (22 DIV), the electrode selection in the control chip contained
1024 electrodes, 723 from the ranking and 301 added neighbors. The selection
on the stimulation chip had 1023 electrodes, 687 of which where from the rank-
ing. On the second trial (26 DIV), the selection on the control chip had 1023
electrodes, with 719 coming from the ranking. The selection for the stimulation
electrode had 1023 electrodes, 684 coming from the ranked list. This indicates
that in all cases there was a significant number of isolated electrodes in the
original ranking and in principle could indicate low redundancy, i.e. few good
electrodes capturing “good quality” spikes from the same source were included
in the ranking.
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Figure 5: Waveforms of the peaks detected on the six electrodes with the highest
activity. Each panel shows the waveforms of all the detected spikes on a given
electrode in a different color, with a discontinuous line. The average of all
waveforms in shown as a thicker, continuous blue line. The amplitude, given
in multiples of the standard deviation of the signal on each channel, clearly
indicates that the spikes on these electrodes were small. Also, on the panels
for the electrodes ranking #3 to #6, a high number of spikes exhibit a clear
deviation from the mean, suggesting an elevated noise level.
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Figure 6: Waveforms of the peaks detected on the six electrodes with the largest
amplitudes. Each panel shows the waveforms of all the detected spikes on a
given electrode in a different color, with a discontinuous line. The average of all
waveforms in shown as a thicker, continuous blue line. In this case the spikes
are large on average, however all panels present a large number of spikes with
clear deviations from the mean waveform.
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Figure 7: Waveforms corresponding to the six top-ranking electrodes according
to the deviation-based method. Each panel shows the waveforms of all the
detected spikes on a given electrode in a different color, with a discontinuous
line. The average of all waveforms in shown as a thichker, continuous blue
line.Only few spikes present large deviations from the mean. In all cases, the
mean amplitudes are below ten times the standard deviation of the channel,
indicating strong signals.

Manually sorting the electrodes in the selection confirmed that their sig-
nals could be easily separated into few different units. Figure 8 illustrates this
with an example from electrodes recorded on the control chip after 22 DIV.
The filtered signal from the first electrode in the selection ranking plus its 4
closest neighbors is fed to the UltraMegaSort 2000 (UMS2K) program. For
each spike detected on any electrode, UMS2K collects a waveform using the
9 samples before the detected peak and the 10 samples following it on all the
electrodes. Thus each detected AP has an associated waveform with dimen-
sions 30x10 (samples times electrodes). A PCA projection is used to reduce
the dimensionality of these waveforms and then k-means clustering is used to
separate them into groups. In the case of the first electrode of the ranking, the
projection of the waveforms along the two first principal components shows two
well differentiated, non-overlapping groups could be clearly identified. This is
confirmed by the average Silhouette values of each cluster: 0.766 (cluster 1) and
0.753 (cluster 2). Observing the average waveform of the spikes assigned to each
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cluster, it can be seen that the spikes in the first cluster have large amplitudes
and a typical AP shape. On the other hand, the average waveform of the spikes
assigned to the second group have an amplitude close to zero, suggesting that
this group is basically noise.

A similar analysis for the electrodes in the selection that scored lower in
the ranking (entries 360 and 723) is shown in Figures 9 and 10.It can be seen
that the electrode from the middle of the ranking still presented a high number
of actual spikes whereas the last electrode from the ranked list included in the
selection contained mostly noise and a few low amplitude spikes. Only 12% of
the peaks detected by UMS2K appeared to correspond to actual spikes, and
their waveforms had very low amplitude. However, the spikes could still be
clearly distinguished from the noise.
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Figure 8: Manual sorting of the top-ranking electrode and its four closest neigh-
bors. The sorting resulted in two clearly differentiated units. The top panel
shows the projection of the waveforms on the first two principal components
(PCAs). The waveforms assigned to each unit appear in two clearly separated
clusters; one was assigned 507 spikes (red) and the second 257 (green). The
bottom panel shows the waveforms of each detected unit. Each plot shows the
waveform of the spikes on one electrode. The blue line indicates the average
waveform and the red dashed line the values two standard deviations above and
below the mean. Cluster 1 (top row), exhibits a typical AP waveform whereas
cluster 2 (botom row) displays low amplitude signals, which do not resemble
APs and can be discarded as noise. 97
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Figure 9: Manual sorting of the electrode from the middle of the ranking and its
four closest neighbors. The top panel shows the projection of the waveforms on
the first two principal components (PCAs). Again in this case two clear units
are clearly distinguished in the PCA projection. The waveforms from both units
are shown in the bottom panel. The waveforms on the top row correspond to
cluster 1 and those on the bottom row to cluster 2. The blue line indicates the
average waveform and the red dashed line the values two standard deviations
above and below the mean. A clear distinction can be seen, with cluster 2
exhibiting AP-like shapes and cluster one having very low amplitude signals,
which can be seen as noise.
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Figure 10: Manual sorting of the electrode from the bottom of the ranking and
its four closest neighbors. The top panel shows the projection of the waveforms
on the first two principal components (PCAs). Here, the “worst” electrode
according to the deviation-based selection method shows separable units. The
clusters in PCA space are not as tight as in the examples shown in Figures 8 and
9, but can still be clearly separated. The bottom panel shows the waveforms of
each detected unit. Each plot shows the waveform of the spikes on one electrode.
The waveforms still show a unit with APs (bottom row) and a unit with very
low amplitude signal or noise (top row), although the amplitudes in this case
are much lower than in the two other examples.
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When applied to the chips, the electrode selection exhibited variability across
time. On the control chip, 523 (51%) of the electrodes remained the same,
whereas in the chip that was stimulated 399 (38.9%) of the electrodes in the
selection were the same on both days as can be seen in Figure 11.
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Figure 11: Location of the electrodes selected using the deviation-based method
at 22 and 26 DIV. The top panel shows the stimulated chip and the bottom
one shows the control. The black dots indicate the electrode locations in the
array. The green and black circles indicate the location of the detected units
at 22 and 26 DIV respectively. The location of each unit was estimated as the
average location of the electrodes in which peaks assigned to the given unit were
detected. Both panels show that although the unit appeared in the same areas,
the precise location of the detected neurons changed between the two days.
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3.2 Automated spike sorting obtains poor results from
cortical cultures recordings

The sorting was performed automatically using the MySort program. For each
chip all the data from each stimulation experiment was combined and sorted
together. Table 1 indicates the number of sorted units found on each case and
the results of the quality assessment. The results on the table indicate the
vast majority of the detected units had very low activity and/or the amplitudes
of their peaks followed non-normal distributions. Removing all the units that
did not meet the quality requirements resulted in roughly 95% of the units
being discarded. Although the remaining units were still numerous and could
be used to asses the behavior of the networks, the high number of discarded
units indicates a major problem in the sorting process. Given the results of
the manual sorting presented in the previous section, it was expected to see
a much larger number of detected units complying with the quality criteria.
The quality measures implemented here were enough only to detect that there
was an issue. A much more extensive analysis would be required to elucidate
what specifically is causing the sorter to detect so many units with abnormal
amplitude distributions or low firing rates.

. Firing Spikes
Missing . L.
. Detected  RPVs > . rate outside Remaining
Condition . spikes > .
Units 5% 10% < 0.5 w30 units
° spikes/s >10%
Control 1824 389 165 1202 1027 90
22 DIV ,
Stim 2250 283 215 1770 1244 85
Control 1756 333 232 962 1065 123
26 DIV ,
Stim 2030 217 228 1480 1194 100

Table 1: Sorting results. The first col um indicates the total number of detected
units as reported by MySort. The following columns indicate the number of
units that did not meet the quality criteria on each case. The last column
shows the number of units on each case that fulfilled all the criteria. Each of
the features used for the quality assessment is described in methods section
(2.4.1).

Like the electrode selection, the number of detected neurons changed be-
tween 22 and 26 DIV. Figure 12 shows the location of the detected neurons on
both days on the stimulation chip. As it can be seen in the figure, the detected
neurons, just like the electrodes, had different locations on each recording.
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Figure 12: Location of the units detected using MySort after discarding the units
that did not meet the quality criteria. The top figure shows the stimulated chip
and the bottom figure shows the control.

Several of the units detected on the stimulation chip appeared very close
or even overlapping each other. The footprints (the average spike waveforms
on all electrodes) of the nearby neurons indicated that these were in fact the
same cells with small changes in waveform amplitudes. Two such cases are
illustrated in Figure 13. In these instances, one cell was active almost exclusively
before the stimulation whereas the nearby or overlapping one became active only
after the stimulation. This indicates that the stimulation induced changes in
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the waveform amplitudes. In order to compensate for this effect, the detected
neurons on the stimulation chip were clustered based on their location and the
activities of all the cells in each cluster were added together.

The detected units on the stimulation chip were clustered with a 17.5 ym
threshold, so that units separated by less than the distance between two elec-
trodes were grouped together. The location of the clustered cells is shown in
Figure 14. As indicated in the figure, the number of units was reduced to~ 50%
and ~ 54% on the first (22 DIV) and second (26 DIV) trials respectively.
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Figure 13: Examples of units with overlapping footprints. A different example,
including two different units observed in a given set of electrodes, is shown on
each panel. The average spike waveform of each unit on the electrodes that
exhibited the largest amplitudes are shown. Each waveform is shown in the lo-
cation corresponding to the electrode where it was detected and the amplitudes
are scaled to avoid overlaps in the representation. In both cases it can be ap-
preciated that the overlapping units have similar footprints, only distinguished
by changes in amplitude and small changes in their waveforms.

34



or °
° ° * Original Units n=85
° o * Clustered n=43
201 ) Q' %0 ']
°
°
° °
] ° ° o °
by 401 [} ° °
S ° ° ¢
5 ° z o
g ° o S
L 60 °
<
S (] LY
= °
> 80,
°
% o
100
°
120 | 1 | 1 | 1 | | | | I
0 20 40 60 80 100 120 140 160 180 200 220
X [electrode positions]
or ° ° ° -
L ° * Original Units n=100
L] °
° P * Clustered n=54
°
201 e ° '
o ° o
° ° °
° °
'E‘ 40+ [ ] ' ‘ °
:‘% ® [ r'y ° °
8 o o oo %o 'S
el ° .
5 *e° o
3, ° (]
> g0 °
°
° LY
1001
°
120 [ I I 1 I 1 I .\ I I J
0 20 40 60 80 100 120 140 160 180 200 220

X [electrode positions]

Figure 14: Location of the original detected units and the clustered ones on the
stimulated chip at 22 (top) and 26 (bottom) DIV. The blue dots indicate the
position of the original units detected in the spike sorting, and the red diamonds
show the locations after the nearby units where clustered. The coordinates
are given in electrode positions; the electrodes on the chip are arranged in a
rectangular grid, with each electrode separated by 17.5um in the horizontal and
vertical axes from its neighbors.
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3.3 Implementation of Closed-loop Stimulation

Figure 15 shows an example trace of the readout and the stimulation channels.
As the figure illustrates, a stimulation pulse can be seen every time an AP
appears in the readout channel.
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Figure 15: Example traces recorded from the readout and stimulation channels
while the closed-loop protocol was being applied. The top panel shows the
recording obtained from the readout channel, where six evident spikes appear
in the time-frame shown. The panel below presents the signal recorded from
the stimulation channel on the same time-frame. A total of eight stimulation
pulses can be clearly distinguished in this recording. There is a stimulation
pulse following each spike from the readout channels (with the stipulated delay)
and additionally two spikes without a preceding AP on the readout channel.

Since the AP detection was carried out using the low resolution hardware
filter, there were occurrences of low amplitude negative peaks that were detected
as APs and triggered a stimulation pulse. In a one-minute recording, 94.02% of
the stimulation pulses corresponded to a preceding AP that could be classified
as such by the offline detection method (threshold-based). This implies that
there was a 5.98% of false positives or “spontaneous” stimulation pulses. All the
detected APs had a corresponding stimulation pulse, thus all the peaks detected
as APs offline were also detected by the hardware filter, with no false negatives.

3.4 Effects of Closed-loop Stimulation

Each of the chips was analyzed using each of the characteristics described in
the methods section. The analysis was performed separately for each of the
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recordings: baseline, blank, stimulation and it is divided in three sections: basic
features, bursting behavior and connectivity.

3.4.1 Closed-loop stimulation causes loss of activity and reduction
of AP amplitudes

Tables 2 and 3 show the basic features from each of the cultures obtained from
recording. As the values indicate, the units detected on the control chip have
similar firing rates, amplitudes and amplitude deviations in the three record-
ings done after 22 DIV. On the recordings done after 26 DIV, the control chip
exhibits lower firing rates and amplitudes and increased amplitude deviations.
The units detected on the stimulated chip present homogeneous values in the
baseline and blank recordings. Comparing the pre-stimulation recordings from
the stimulated chip at 22 and 26 DIV shows that the firing rate remained at the
same level, the peak amplitude decreased and the amplitude deviation increased.
The values obtained after the stimulation indicate a clear decay in all three fea-
tures when compared with the pre-stimulation recordings. All these similarities
and differences were found to be statistically significant when subjected to a
Mann-Whitney U test [79].

Mean Firing Mean Mean
Condition rate (spikes/s) Amplitude Amplitude
(STD) Deviation

Base 1.3922 25.3357 0.1916

Control Blank 1.598 24.8921 0.18

Stim 1.6042 24.6012 0.1868

Base 1.24 23.493 0.171

Stim Blank 1.21 23.511 0.163

Stim 1.05 17.96 0.091

Table 2: Basic features from both chips obtained from the recordings at 22
DIV. The columns show the mean frequency of spikes from each unit, the mean
amplitude of the spikes and the mean standard deviation of the spike amplitudes.
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Mean Firing Mean Mean

Condition rate (spikes)s) AIFSP%S;de /?)rél\ig:?o(ﬁa
Base 1.2024 23.1556 0.2345
Control  Blank 1.2359 22.7846 0.2268
Stim 1.3235 22.2995 0.2249
Base 1.2 20.642 0.204
Stim Blank 1.2238 20.5392 0.1962
Stim 0.8169 15.914 0.1126

Table 3: Basic features from both chips obtained from the recordings at 26 DIV.
The columns show values for the same variables as Table 2.

3.4.2 Bursting patterns

Figure 16 shows a comparison of the firing frequencies of each chip on the blank
recordings at 22 DIV. This comparison illustrates the qualitative differences
observed on the bursting behavior on each case. The control chip exhibits a
higher level of tonic firing and its bursts are in general shorter. The stimulated
chip on the other hand has much lower levels of tonic firing, which diminishes the
threshold for burst detection and causes the bursts to be longer and to contain
a higher number of spikes. A detailed quantitative analysis of the bursting
behaviors and the effects of the stimulation on them is presented below.

The values related to the distribution of bursts on each of the recordings is
shown in tables 4 and 5. According to these values, the bursting rate increases
on the control chip from 22 to 26 DIV, with the IBI decreasing accordingly. The
values from each day were found to have no statistically significant differences,
whereas the increase in bursting rate and decrease in IBI seen from 22 to 26
DIV were both found to be statistically significant. In comparison, the stimu-
lated chip shows lower bursting rates and larger IBIs. Comparing the baseline
and blank recordings on the stimulated chip at 22 DIV shows a large, significant
spontaneous drift is seen in both the bursting rate and the IBI. A similar change
is observed at 26 DIV between the blank and the post-stimulation recordings.
Thus no change in the bursting rate or the IBI can be attributed to the stimu-
lation. The values on the stimulated chip show significant differences between
the recordings at 22 and 26 DIV only when the blank recordings are compared;
considering the magnitude of the spontaneous drift. Thus it can be stated that
as opposite to the control chip, the culture on the stimulated chip did not show
an increase in the frequency of bursts between 22 and 26 DIV. Finally, the co-
efficient of variation (CV) of the IBI shows high values in all cases, indicating
that the IBI had a large variability in all the recordings on both chips. This
means that the spacing between bursts was highly irregular in both cultures.
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Figure 16: Raster plots and firing frequencies of both chips during the blank
recordings. The top panel shows the raster plot of the control chip. A high
level of tonic firing is observed, although clear culture-wide bursts are clearly
distinguishable. The middle panel shows the raster plot corresponding to the
stimulated chip. The stimulated chip Igg fewer units exhibiting tonic firing and
the network-wide bursts have a longer duration. The bottom plot shows the
frequency of spikes on both chips. Due to the higher level of tonic firing, the
threshold for burst detection on the control chip (green) is higher, reducing the
burst duration even further in this case.



Mean Bursting

Condition Rate Mean BBI CV IBI
(Bursts/minute) (seconds)

Base 7.9807 5.1328 0.7565

Control  Blank 6.7806 5.9554 0.7456
Stim 7.5977 5.5147 0.6112

Base 6.1655 5.4804 0.835

Stim  Blank 41352 7.2499 0.7764
Stim 4.2559 6.7924 0.7976

Table 4: Bursting rates and inter burst intervals (IBIs) and the coefficient of
variation (CV) of the IBIs computed from the recordings at 22 DIV. The bursts
were detected using the Gaussian-mixture model approach described in section
2.5.2, thus features refer to the ensemble of detected neurons.

Mean Bursting Mean IBI

Condition Rate CV IBI
(Bursts/minute) (seconds)

Base 10.2467 4.1023 0.8645

Control  Blank 13.2456 2.98 0.6713

Stim 12.2945 3.274 0.6328

Base 6.2936 6.9891 0.8551

Stim  Blank 6.7085 6.5584 0.8049

Stim 4.7960 5.3691 0.8402

Table 5: Bursting rates and inter burst intervals computed from the recordings
at 26 DIV. The columns show values for the same variables as Table 4.

3.4.3 Bursts features

The burst size (in number of units and spikes) and duration, together with the
firing rates observed within the bursts were calculated for each burst on each
recording. The average values for these features are shown in tables 6 and 7. The
recordings from the control chip at 22DIV revealed a significant increase in burst
sizes (both in number of spikes and number of units involved) and within-burst
firing rates on the third recording. Since the control chip was not stimulated,
these changes can be considered a spontaneous drift. On the recordings done
at 26 DIV there was a significant decrease in the number of spikes per burst,
which again can be considered a spontaneous drift. Comparing the recordings
from the control chip at 22 and 26 DIV, the number of units per burst increased
significantly and the burst duration exhibited a significant decrease in all three
recordings. The differences in the within-burst firing rates across days were
smaller than across the recordings at 22 DIV. In sum, at 26 DIV the control
chip showed shorter bursts involving more units than at 22 DIV.

The stimulated chip shows a rather different behavior: its bursts are much
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longer in time, causing them to have bigger sizes in terms of number of spikes
even though the firing rates are lower than in the control chip. At 22 DIV, the
stimulated chip shows a large spontaneous drift in the burst lengths (baseline
and blank recordings) and firing rates. As a consequence, a large difference
is also observed in the burst sizes in terms of number of spikes. The post-
stimulation recording shows significantly lower firing rates (in accordance with
the reduced firing rates shown in Table 2) and a lower number of units in-
volved on each burst, which in turn result in a much lower number of spikes per
burst. The recordings at 26 DIV show a similar situation: the post-stimulation
recording has significantly lower firing rates and the number of units partici-
pating in the bursts is also reduced, causing the bursts to be much smaller in
terms of number of spikes. Comparing the recordings of the stimulated chip
on both days, the bursts are overall shorter but the differences fall within the
range of the spontaneous drift. The number of units involved per burst is sig-
nificantly larger on the pre-stimulation recordings at 26 DIV as compared to
the same recordings at 22 DIV, however there was no significant difference af-
ter the stimulation. The firing rates in the pre-stimulation recordings did not
exhibit significant differences larger than the spontaneous drifts, and the same
happened on the post-stimulation recordings. The number of spikes per burst
is clearly smaller after the stimulation on the recordings from 26 DIV, but this
can be directly explained by the shorter length of the bursts. To summarize,
the stimulation caused a clear decrease of the number of units per bursts and of
the within-burst firing rates. This agrees with the observation that the stimu-
lation decreased the firing rates. The only feature that is distinctively changed
from 22 to 26 DIV is the burst size in number of units. Yet it is apparent that
the sampling here is not sufficient to properly estimate the magnitude of the
spontaneous changes.
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Mean
Mean Burst

. Mean Burst Mean Burst . Within-Burst
Condition . . . i Duration .
Size (Spikes) Size (Units) Firing Rate
(Seconds) .
(spikes/s)
Base 343.9345 64.128 0.0779 63.8573
Control  Blank 347.2367 65.2332 0.0784 65.9983
Stim 367.0879 69.8619 0.073 70.3566
Base 639.8601 52.3823 0.2915 41.28
Stim Blank 859.4605 60.9671 0.324 45.712
Stim 433.544 36.8296 0.3851 31.5637

Table 6: Burst properties calculated from the recordings at 22 DIV. The bursts
were detected using the combined firing patterns from all neurons, as described
in 2.5.2. The columns show the mean sizes of the detected bursts, expressed in
number of spikes, number of neurons involved and number of seconds. The last
column shows the average firing rate of all neurons during the bursting periods.

Mean
Mean Burst L.
. Mean Burst Mean Burst . Within-Burst
Condition . . i . Duration .
Size (Spikes) Size (Units) Firing Rate
(Seconds) .
(spikes/s)
Base 355.0499 89.8076 0.0539 70.8874
Control  Blank 369.2395 92.4118 0.0613 68.1771
Stim 338.9566 86.4872 0.0547 70.9868
Base 926.7875 77.8750 0.3138 48.9677
Stim Blank 672.6615 69.7588 0.2514 45.1168
Stim 229.1398 38.9749 0.2124 28.1809

Table 7: Burst properties calculated from the recordings at at 26 DIV. The
columns show values for the same variables as Table6.

3.4.4 Closed-loop stimulation causes loss of connectivity

The connectivity between the detected neurons was assessed using the cross-
correlogram method and the STTC. As Figure 17 illustrates, at 22DIV the
connectivity in the control chip remained practically unaltered, whereas on the
stimulated chip, a clear decrease was observed after the stimulation. The sta-
tistical test determined that there were no significant differences among the
connectivity distributions on the control chip and that the apparent decrease
in connectivity in the stimulated chip after the stimulation was statistically
significant for both of the measures used.

The results obtained from the experiment performed at 26 DIV are shown
in in Figure 18. The results on this second experiment confirmed the initial
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observations: also at 26 DIV the stimulation caused a significant decrease in
connectivity while the values obtained for the different recordings from the con-
trol chip had no significant differences.
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4 Discussion

The method devised to obtain the electrode selection appears to provided the
desired results. Based on the waveform shapes and the PCA projections from
the electrodes at the top (Figure 8), middle (Figure 9) and bottom (Figure
10) of the ranking, even without a fully systematic analysis of all the selected
electrodes, it can be stated that the method did in fact provide a selection of
electrodes with clean signals that could easily be separated into different units
(or in which the signals from units could be clearly distinguished from the noise).

The automatic spike sorting resulted initially in a very large number of
detected units. Applying few quality control measures reduced this number
dramatically, as they indicated that ~95% of the units should be discarded.
The remaining units could safely be considered good quality results and used
for further analysis. However it is clear that this process discarded a large part
of the data, therefore only a fraction of the neurons in the culture could be taken
into account for the functional analysis of the neural network. This result is a
clear indication that the spike sorting method was not adequate for the analysis
of this type of recording. The MySort program [75] has been successfully used
for the analysis of retina recordings, yet it is clear that it needs to be modified
before it can be applied to cortical recordings.

The closed-loop protocol was successfully implemented, although the limi-
tations imposed by the hardware filter resulted in a small percentage of stim-
ulation pulses triggered in response to noise rather than actual spike events.
Improvements in the hardware filter design could possible reduce or eliminate
this artifact.

Both the amplitudes (Figure 13) and the firing rates (Tables 2 and 3) of the
detected units were significantly reduced as a consequence of the stimulation.
The changes were not limited in any way to the units located near the stimu-
lation electrode, and were instead seen as a global change in the culture. This
effect should be investigated further: it is necessary to discard possible hard-
ware malfunctions and to examine in detail how many APs were triggered with
each stimulation pulse. The information available from the present study can
however already discard a major artifact or cell death, as the spike frequencies
and amplitudes at the electrode level, i.e. the pre-sorted data, do not show
significant changes caused by the stimulation (Figure 19). Although there is
no explicit analysis of firing rates, the study by Wagenaar et al. [13] shows
array-wide decreases of firing rates when cultures are stimulated with frequen-
cies above 1Hz, which is consistent with the results observed here. Moreover, in
the subsequent study by Madhavan et al. [83], the “quieting” effect of multi-site
stimulation is seen to last for up to 8 hours after the stimulation protocol, an
observation consistent with the reversible nature of the stimulation effects seen
in the present study.
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In accordance with the decreased firing rates, the stimulation causes the
stimulated chip to present bursts in which a smaller number of units are impli-
cated and in which these units exhibit lower firing rates. Notably, the bursting
rates and IBIs do not seem affected by the stimulation so the temporal struc-
ture of the bursting patterns seems to remain unaltered. It is also remarkable
to see that unlike the control chip, the level is bursting did not increase in the
stimulated chip at 26 DIV. This could indicate that the stimulation had tam-
pered with the developmental process of the network, as it was expected (and
observed in the control) for the network to produce more bursts as it develops.
The features of bursts also appear to remain more constant in the stimulated
chip whereas a clear drift towards narrower, more intense bursts was seen on
the control; however the large variation seen in the pre-stimulation recordings
points toward a lack of proper sampling of these features. More samples would
be required to properly establish the effect of the stimulation on the detailed
features of the bursts.

The connectivity, as assessed by the cross-correlogram method and the STTC,
presents a clear evidence of the widespread effects of the stimulation. The same
effect is seen when either method is used to measure the connectivity between
the units, and the results are similar both at 22 and 26 DIV. The decrease in
connectivity could in principle be attributed to the generalized loss of activity
seen after the stimulation, even though both of the methods used do include a
normalization based on the spike rates, which in principle makes both connec-
tivity measures independent of the activity levels.

In summary, these observations seem to indicate that the electrical stimu-
lation caused a widespread inhibition of spiking activity, including a notable
decrease in the bursting levels and ultimately being reflected as a network-wide
loss of connectivity. In addition, the results suggests that the stimulation on the
chip interferes with the normal development of bursting patterns and possibly
bursts features. However, given the limited sampling and the methodological
shortcomings, these results would still need to be confirmed by further experi-
ments.
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5 Conclusion

This study presents a successful implementation of a closed-loop stimulation
protocol for neuronal cultures based on the MEA1K chip. The study of the
effects of the stimulation revealed that the methodologies for the analysis of
cultured neuronal networks on high-resolution MEAs are not fully developed.
In particular, the spike sorting technique was found not to be adequate and the
stimulation effects and parameters clearly need a much more detailed study. In
addition, the differences between the two cultures observed before any stimu-
lation had taken place revealed that there is a high degree of variability across
cultures, thus a larger number of cultures should be examined in order to de-
termine the normal ranges of values for the different features.

Despite these shortcomings, the present work shows clear and consistent ev-
idence of a reversible, generalized decrease in the firing rate of the detected neu-
rons induced by the stimulation. On the methodological side, this study presents
developments in the analysis of data obtained from extra-cellular recordings.
Specifically, new approaches for the selection of recording electrodes on the
MEA1K and for burst detection are introduced, together with a compilation of
methods for the characterization of neuronal cultures, implemented and adapted
to be used with data obtained from MEA1K recordings.

In order to improve over the experimental results obtained here, it would be
necessary to i) investigate the causes of the low quality of the units detected
by the spike sorter and adapt it as needed for its use with cortical neurons,
ii) thoroughly investigate the effects of different stimulation parameters on each
stimulated neuron, obtaining spike-triggered averages, locating the most suitable
stimulation point and then building excitability profiles and iii) sampling a larger
number of cultures to observe the distribution of values of each of the features
used for the analysis of the networks.
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