000069654 001__ 69654
000069654 005__ 20191212100659.0
000069654 0247_ $$2doi$$a10.3390/mi9020045
000069654 0248_ $$2sideral$$a104612
000069654 037__ $$aART-2018-104612
000069654 041__ $$aeng
000069654 100__ $$aMalankowska, M.
000069654 245__ $$aThree-dimensional fractal geometry for gas permeation in microchannels
000069654 260__ $$c2018
000069654 5060_ $$aAccess copy available to the general public$$fUnrestricted
000069654 5203_ $$aThe novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The permeation of oxygen and carbon dioxide through the fractal membrane is measured and validated theoretically. The results show high permeation flux due to low resistance to mass transfer because of the hierarchical branched structure of the fractals, and the high number of the apertures. This approach offers an advantage of high surface to volume ratio and pores in the range of nanometers. The obtained results show that the gas permeation through the nanonozzles in the form of fractal geometry is remarkably enhanced in comparison to the commonly-used polydimethylsiloxane (PDMS) dense membrane. The developed chip is envisioned as an interesting alternative for gas-liquid contactors that require harsh conditions, such as microreactors or microdevices, for energy applications.
000069654 536__ $$9info:eu-repo/grantAgreement/ES/DGA/EU-EACEA/FPA2011-0014$$9info:eu-repo/grantAgreement/ES/DGA/EU-EACEA/SGA2012-1719
000069654 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000069654 590__ $$a2.426$$b2018
000069654 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b25 / 61 = 0.41$$c2018$$dQ2$$eT2
000069654 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b55 / 94 = 0.585$$c2018$$dQ3$$eT2
000069654 592__ $$a0.536$$b2018
000069654 593__ $$aControl and Systems Engineering$$c2018$$dQ2
000069654 593__ $$aMechanical Engineering$$c2018$$dQ2
000069654 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ2
000069654 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000069654 700__ $$aSchlautmann, S.
000069654 700__ $$aBerenschot, E.J.W.
000069654 700__ $$aTiggelaar, R.M.
000069654 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000069654 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000069654 700__ $$aTas, N.R.
000069654 700__ $$aGardeniers, H.
000069654 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000069654 773__ $$g9, 2 (2018), 45 [12 pp]$$pMicromachines (Basel)$$tMicromachines (Basel)$$x2072-666X
000069654 8564_ $$s625081$$uhttps://zaguan.unizar.es/record/69654/files/texto_completo.pdf$$yVersión publicada
000069654 8564_ $$s101836$$uhttps://zaguan.unizar.es/record/69654/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000069654 909CO $$ooai:zaguan.unizar.es:69654$$particulos$$pdriver
000069654 951__ $$a2019-12-12-10:03:37
000069654 980__ $$aARTICLE