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ABSTRACT
The knowledge of the forest biomass reduction produced by a wildfire can assist in the
estimation of greenhouse gases to the atmosphere. This study focuses on the estimation of
biomass losses and CO2 emissions by combustion of Aleppo pine forest in a wildfire occurred
in the municipality of Luna (Spain). The availability of low point density airborne laser
scanning (ALS) data allowed the estimation of pre-fire aboveground forest biomass. A
comparison of nine regression models was performed in order to relate the biomass,
estimated in 46 field plots, to several independent variables extracted from the ALS data.
The multivariate linear regression selected model, including the percentage of first returns
above 2 m and 40th percentile of the return heights, was validated using a leave-one-out
cross-validation technique (6.1 ton/ha root mean square error). Biomass losses were esti-
mated in a three-phase approach: (i) wildfire severity was obtained using the difference
normalized burn ratio ΔNBRð Þ, (ii) Aleppo pine forest was delimited using the National
Forest Map and ALS data and (iii) burning efficiency factors were applied considering severity
levels. Post-fire biomass was then transformed into CO2 emissions (426,754.8 ton). This study
evidences the usefulness of low-density ALS data to accurately estimate pre-fire biomass, in
order to assess CO2 emissions in a Mediterranean Aleppo pine forest.
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Introduction

Wildfires are a socio-environmental hazard in
Mediterranean ecosystems, acting as a source of
greenhouse gases (GHGs) emissions to the atmo-
sphere (Akagi et al., 2013; Andreae et al., 1988;
Seiler & Crutzen, 1980; Van Der Werf et al., 2010;
Wiedinmyer et al., 2011). Consequently, fires are able
to alter the carbon cycle behaviour at regional or even
global scales (Narayan, Fernandes, Van Brusselen, &
Schuck, 2007), as well as to decrease the effect of
carbon sequestration by forest ecosystems (Van Der
Werf et al., 2006; Wiedinmyer & Neff, 2007). In the
Mediterranean basin, an average of 45,000 fires is
recorded yearly (Oliveira, Oehler, San-Miguel-
Ayanz, Camia, & Pereira, 2012), increasing the albedo
and determining the current landscape (Pausas,
Llovet, Rodrigo, & Vallejo, 2008). Although these
values and the resulting emissions are variable in
time and space, biomass burning contributed signifi-
cantly in the total direct carbon monoxide (CO)
emissions (Pétron et al., 2004). These natural or
anthropogenic disturbances might be enhanced by
climate change, increasing fire risk (Moriondo et al.,

2006) particularly in summer months (Sebastián-
López, Salvador-Civil, Gonzalo-Jiménez, &
SanMiguel-Ayanz, 2008). In Spain, fire statistic regis-
ters show a reduction in the number of fire events
during the last decade (2001–2010), as well as in the
total burned area (Rodrigues, Ibarra, Echeverria,
Perez-Cabello, & de la Riva, 2014; San-Miguel-
Ayanz et al., 2012). However, the occurrence of
large fires (>500 ha) has increased. In 2015, 39% of
the total area affected by fires was burned in a large
fire (MAGRAMA, 2016a). Moreover, if fire recur-
rence is high, regeneration process might fail for
even species with high resilience such as Aleppo
pine (Pinus halepensis Mill.) (Pausas et al., 2008),
influencing carbon sequestration. Under this context,
scientists, fire managers and decision-makers require
the most accurate information available related to fire
emissions and its impact on the environment and
population. The account of carbon dioxide (CO2)
emissions is essential for climate regulation policies
and the evaluation of the effects of these policies
(Mieville et al., 2010), as well as for understanding
the services that forest provide to societies (Lal, 2008;
Pan et al., 2011).
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GHG emissions from fires estimation require (i) the
delimitation of the burned area, (ii) the estimation of pre-
fire biomass, (iii) the assessment of the fraction of bio-
mass consumed by fire, also defined as burning efficiency
(De Santis, Asner, Vaughan, & Knapp, 2010) and (iv) the
use of conversion factors to estimate GHG emissions.
However, little research has been conducted on quantify-
ing pre-fire biomass and biomass consumed by fire.
According to De Santis et al. (2010), biomass consump-
tion was traditionally estimated using a two-step metho-
dology which includes (i) the estimation of pre-fire
biomass by applying allometric regression equations
using destructive sampling or biomass values per species
and (ii) the post-fire biomass estimated by field-based
weighting (Prasad et al., 2001; Sá, Pereira, & Silva, 2005;
Ward et al., 1996) or by visual examination (Roy, Jin,
Lewis, & Justice, 2005). An alternative approach is based
on the use of remote sensing imagery for pre-fire bio-
mass estimation. Despite the wide acceptance of the use
of optical and radar remote sensing to estimate forest
attributes such as biomass (Chuvieco, 2009; Leboeuf,
Fournier, Luther, Beaudoin, & Guindon, 2012; Le
Toan, Beaudoin, Riom, & Guyon, 1992; Tanase, de la
Riva, Santoro, Pérez-Cabello, & Kasischke, 2011), air-
borne laser scanning (ALS) is considered one of the
best techniques for forest structural parameters estima-
tion (Lefsky, Cohen, Parker, & Harding, 2002; Maltamo,
Næsset, & Vauhkonen, 2014; Vosselman &Maas, 2010).

In this sense, some studies have used low-density
ALS data to estimate forest parameters such as tree
height, crown diameter, basal area, stem density,
volume (Guerra-Hernández, Tomé, & González-
Ferreiro, 2016a; Hayashi, Weiskittel, & Sader, 2014;
Holopainen et al., 2010; Mehtätalo, Virolainen,
Tuomela, & Packalen, 2015; Montealegre, Lamelas,
de la Riva, García-Martín, & Escribano, 2016;
Næsset, 2002; Næsset & Økland, 2002; Popescu,
Randolph, & Ross, 2003) as well as biomass (García-
Gutiérrez, Martínez-Álvarez, Troncoso, & Riquelme,
2015; Guerra-Hernández et al., 2016b; Hall, Burke,
Box, Kaufmann, & Stoker, 2005; Montagnoli et al.,
2015; Shendryk, Margareta, Leif, Natascha, 2014). In
addition, some of them have compared different
point densities (González-Ferreiro et al., 2013;
Singh, Gang, James, & Ross, 2015). However, few
studies have been focused on comparing different
algorithms to estimate forest parameters and they
were all applied to high-density point clouds
(Gagliasso, Hummel, & Temesgen, 2014; García-
Gutiérrez et al., 2015; Gleason & Im, 2012; Görgens,
Montaghi, & Rodriguez, 2015; Latifi, Nothdurft, &
Koch, 2010).

The main objective of this study is to estimate the
CO2 emissions derived from the consumption of the
aboveground tree biomass (AGB), which refers to the
total biomass of the trees considering stem, branches
and needles, in a heterogeneous Aleppo pine forest,

located in Aragón Region (Spain). To achieve this
goal, a discrete, multiple-return, low point density
ALS data and field plots representative of pine stands
were used to fit and validate the AGB models. A
secondary objective was the comparison of different
regression models, including machine learning.

Besides, the majority of previous approaches to
CO2 estimation assume that biomass is completely
consumed. However, during wildfires in conifer
stands in some cases only the needles and the small
fine twigs of the pine crowns are consumed (Call &
Albini, 1997; Mitsopoulos & Dimitrakopoulos, 2007;
Scott & Reinhardt, 2001). Consequently, different
combustion factors were applied to avoid assuming
that biomass was completely consumed by the fire
(French, Goovaerts, & Kasischke, 2004). The fire
severity levels were extracted from the difference
normalized burn ratio (ΔNBR) spectral index applied
to Landsat 8 OLI images.

Materials

Study area

The study area, burned on 4 July 2015, is located in
Luna municipality, northeast of Spain (42°12ʹN, 0°
45ʹW). Aleppo pine has a high potential of ignition
and represents almost 50% of the forested area in
Aragón and is well adapted to these Mediterranean
environmental conditions. The fire scorched in the
area of 14,263 ha, of which 3390.4 ha was woodland.
Those forested areas were covered in a 62.3% by
monospecific Aleppo pine. As can be observed in
Figure 1, for forest inventory purposes, the field cam-
paign to estimate AGB was conducted in a close
unburned area (Figure 1(b)). The proximity between
both sites (see Figure 1(a) and (b)) and the similarity
on environmental characteristics such as slope, cli-
mate and vegetation enable to extrapolate the AGB
model to the burned area (Figure 1(a)). This similar-
ity was previously evaluated by comparing some vari-
ables derived from the ALS metrics such as slope,
canopy cover and tree height.

These heterogeneous pine forests from the struc-
tural point of view appear fragmented into stands of
variable size, accompanied by an evergreen under-
storey with species, such as: Quercus ilex subsp.
rotundifolia, Quercus coccifera, Juniperus oxycedrus,
Buxus sempervirens and Juniperus phoenicea.

Climate of the region is Mediterranean with con-
tinental features. Annual precipitation is medium-low
and irregular, averaging 525 mm and mostly occur-
ring in autumn and spring. Winter has a monthly
mean temperature less than 10°C, whereas summers
have temperatures of ~20°C. The study area is char-
acterized by a hilly topography, with elevations ran-
ging from 430 to 1150 m above sea level and slopes
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from 0° to 39°. The lithology of the study area corre-
sponds to Miocene shales and sandstones, alternating
with conglomerates.

Field plot data

Field data were acquired in 46 circular plots, 15 m
radius at the unburned area during June and July
2015 (Figure 1(b)). The location of the field plots
was selected, within the limits of the Aleppo pine
stands at the unburned area, using a stratified ran-
dom sampling technique, in order to achieve a repre-
sentative sample of the variability of the terrain
(Næsset & Økland, 2002), forest structure and tree
density (Montealegre et al., 2016). Thereby, terrain
slopes, tree height and canopy cover of the study area
were derived from ALS point cloud to define homo-
geneous areas.

The centre of the selected plots (Figure 1(b)) was
located in the field using a Leica VIVA GS15 CS10
GNSS real-time kinematic Global Positioning System.
The average accuracy of the planimetric coordinates
was 0.18 m. Tree breast height diameter (dbh) was
measured at 1.3 m, using a Mantax Precision Blue
diameter caliper (Haglöf Sweden®). It should be noted
that only the trees with a dbh >7.5 cm were measured
in each plot. The AGB was calculated for each plot
according to Montero, Ruiz-Peinado, and Muñoz
(2005) allometric equation and extrapolated to per
hectare biomass value (kg of dry biomass per ha)
considering the plot area (Equation (1)).

Biomass kg=hað Þ ¼ CF�ea�dbhb
Aplot

�10;000; (1)

where CF is a correction factor (CF ¼ eSEE
2=2) being e

the Euler number and SEE the standard error

(0.151637); dbh is breast height diameter in cm; a
(−2.0939) and b (2.20988) are the specific parameters
for Aleppo pine; and Aplot is the area of each plot
(706.8 m2).

These data act as ground truth to adjust and validate
the AGB predictive model, which would be extrapolated
to the burned area (Figure 1(a)) to estimate pre-fire
biomass. The extrapolation of the AGB model was car-
ried out in a Geographical Information System (GIS)
environment using the selected Light Detection and
Ranging (LiDAR) metrics and the coefficients of the
model.

Remote sensing data

The ALS data were captured for the burned and
unburned area in several surveys carried out 4 years
before the fire ignition between January and February
2011, using a small-footprint oscillating-mirror air-
borne Leica ALS60 discrete-return sensor. The
Spanish National Plan for Aerial Orthophotography
(PNOA) provided these data with a nominal density
of 0.5 point/m2 (IGN, 2017b). Data were delivered by
the National Geographic Information Centre (CNIG)
in 2 × 2 km tiles of raw data points in LAS binary
files format v. 1.2. The x, y and z coordinates were
provided in UTM Zone 30 ETRS 1989 geodetic refer-
ence system and orthometric heights. The point cloud
was captured with up to four returns measured per
pulse. The ALS60 sensor was operating in 1.064 µm
wavelength, 0.22 mrad beam divergence and ±29 scan
angle degrees from nadir. The ALS point cloud den-
sity was 1.5 point/m2, considering all returns with a
vertical accuracy better than 0.2 m for the area
burned on 4 July 2015 and for the unburned one.
The temporal lag between ALS acquisition data at the
unburned area, captured in 2011, and fieldwork

Figure 1. Study area. Aleppo pine forest stands, inside the perimeter of the Luna wildfire (a); location of the 46 forest inventory
plots (b). High spatial resolution orthophotography (PNOA-2012) (IGN, 2017a) is used as backdrop.
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campaign, performed in June and July 2015, was
considered appropriate, as no significant changes
took place in the study area in that period.

Pre-fire and post-fire Landsat 8 OLI land surface
reflectance images, acquired on June 30 (path 200, row
31) and July 9 (path 199, row 31) 2015, were selected for
ΔNBR index calculation for the burned area and down-
loaded from USGS (2016). These products are generated
using Landsat Surface Reflectance Code (LaSRC) algo-
rithm (Vermote, Justice, Claverie, &Franch, 2016).

Methods

The two-phase approach methodology includes the
pre-fire biomass estimation through the comparison
of different models and the estimation of biomass
losses by applying three burning efficiency factors to
assess the CO2 emissions to the atmosphere (Figure 2).

Pre-fire AGB estimation

This section describes the process followed for ALS
data processing, as well as the generation of pre-fire
AGB model.

ALS data processing
The first processing step was noise point removal,
which included verification of the overlapping returns.
Thereafter, ALS point clouds were filtered using the
multiscale curvature classification algorithm (Evans &
Hudak, 2007) to extract the ground points. This algo-
rithm, implemented in the MCC 2.1 command-line
tool, is suitable for this environment according to

Montealegre, Lamelas, and de la Riva (2015a). Then, a
digital elevation model (DEM) with a 1 m size grid was
generated using the Point-TIN-Raster interpolation
method (Renslow, 2013), following Montealegre,
Lamelas, & de la Riva., (2015b). The normalized heights
were obtained by the subtraction of the ground eleva-
tion value of the DEM from each point height. The
normalized ALS tiles were clipped to the spatial extent
of each field plot (Figure 1(b)). Furthermore, a wide
range of statistical metrics commonly used as indepen-
dent variables in forestry were calculated (Evans,
Hudak, Faux, & Smith, 2009) using FUSION LDV
3.30 open source software (McGaughey, 2008). It
should be noted that ALS-derived variables were gen-
erated after applying a threshold value of 2 m height so
as to remove ground and understorey laser hits accord-
ing to Nilsson (1996) and Næsset and Økland (2002).

Model for estimating pre-fire AGB
With the aim of comparing the predictive perfor-
mance of different regression methods for the estima-
tion of AGB, eight regression methods were analysed:
a multivariate linear regression (MLR) model, two
machine learning algorithms and five regression trees
structures. These methods are briefly described below.

MLR has been widely employed to estimate forest
parameters by relating dependent variables, from field-
work campaign, and independent variables, extracted
from the ALS point cloud (García, Godino, & Mauro,
2012; Gonzalez-Ferreiro, Dieguez-Aranda, & Miranda,
2012; Lim, Treitz, Wulder, St-Onge, & Flood, 2003;
Means et al., 1999; Næsset & Økland, 2002; Watt
et al., 2013). As a first step following Montealegre
et al. (2016) the Spearman’s rank correlation coefficient
(p) was calculated in R software, in order to select the
ALS variables that show the strongest correlation coef-
ficient with field plot biomass data. The selection of the
ALS metrics was made within a minimum p value of
±0.5. Then, the selected variables were included in a
forward stepwise regression, in order to avoid overfit-
ting by selecting the smallest possible number of pre-
dictor variables. The fitted model was selected
according to measures of goodness of fit. Moreover, it
was verified if the fitted model meets the basic assump-
tions of linear regression models according to García
et al. (2012). Logarithmic transformation of dependent
and independent variables was explored in the cases
where statistical hypothesis of linear regression models
could not be fulfilled (García et al., 2012; Means et al.,
1999), as well as to verify whether the measures of
goodness of fit of the models improve.

Support vector machine (SVM) is a supervised
learning model which has associated learning algo-
rithms that analyse and recognize patterns. This
method assumes that input data are separable in
space (Mountrakis, Jungho, & Caesar, 2011). SVM
tries to find among multidimensional hyperplanes

Figure 2. Methodology for biomass losses and CO2 emissions
estimation.
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the optimal separation between classes, where the
separability is a maximum. The data located in the
hyperplane are the most difficult to classify since they
have lower separability and they are called support
vectors. SVM was implemented by using R package
“e1071” and models with linear and radial kernels
were computed. In both SVM models, the parameter
cost was defined in the interval 1–1000, and the
parameter gamma in the interval 0.01–1, applying
the best parameters after tuning the model.

Random forest (RF) is an ensemble learning
method that uses decision trees as base classifier. RF
combines a decision tree that depends on the values of
a random vector sampled independently and with the
same distribution for all trees in the forest (Breiman,
2001). The algorithm adds randomness to bagging and
increases the diversity of decision trees by growing
them from different subsets. In each decision tree, RF
divides the nodes by using the best variables from a
random sample. RF was implemented through R pack-
age “randomForest” (Liaw & Wiener, 2002) and
“caret” (Van Essen et al., 2001). The RF model was
adjusted using two parameters: the number of trees to
growth (ntrees) and the number of variables selected
randomly at each split (mtry). They were in the inter-
vals 1–1000 and 1–2, respectively.

The regression tree structures are nonparametric
regression techniques based on “If-Then” rules. In
this study three linear models and two non-linear
local models are computed. The R package
“CORElearn” has been used to perform the different
regression trees. It should be added that the differ-
ences between them refer to the regression model
considered in the leaf nodes.

Locally weighted linear regression (LWLR), or
loess, is a method which fits a regression surface to
data by smoothing the dependent variable as a func-
tion of the independent variables (Cleveland &
Devlin, 1988). The coefficient of smoothness is fitted
by computing weighted mean square error and con-
sidering a distance function.

Linear model with a minimum length principle
(MDL) is based on the rule developed by Rissanen
(1978) which considers that regularities in a set of
data can be used to compress the data by using fewer
symbols, from a finite alphabet, than needed to
explain the data faithfully.

Reduced linear model (RLM) is a linear model com-
puted by the least square method and, after that, simpli-
fied using an exhaustive search to remove those variables
that contribute little to the model in order to minimize
the estimated error, as in regression tree models like the
so-called M5 in Waikato Environment for Knowledge
Analysis (Weka) software (Quinlan, 1992).

K nearest neighbour (KNN) is a lazy learning
method based on the KNN algorithm (Fix & Hodges,
1951), which includes two phases. First, the KNNs are

searched using the complete dataset and considering an
established distance. Then, the mean of the k-most
similar instances is used for the prediction.

Weighted k nearest neighbours (WKNNs) is a
refinement of the KNN algorithm, which gives greater
weight to the closer neighbours according to their
distance to the observations. In this sense, the
weighted mean of the KNNs is used for the prediction.

Model validation and comparison
The algorithms were computed after applying a pre-
processing phase which is based on the normalization
of the data in values ranging from 0 to 1. The scaling
of the data avoids weights saturation (Görgens et al.,
2015) and may improve the performance of the mod-
els. In order to avoid overfitting of the model by
selecting the smallest possible number of predictor
variables, a forward stepwise regression was used.

Considering that fieldwork is a time-consuming
task and increases the costs of the study, it was not
possible to measure a high number of field plots. In
this sense, the 46 measured plots, although may seem
a low number, are enough to meet the statistical
requirements. Accordingly, the models were validated
using a leave-one-out cross-validation (LOOCV)
technique (Maltamo et al., 2014), in order to do not
further reduce the sample (Andersen, McGaughey, &
Reutebuch, 2005). For those methods with random-
ness, LOOCV was executed 100 times so as to
increase the robustness in the results (García-
Gutiérrez et al., 2015).

The comparison between models was performed
by analysing the results in terms of root mean square
error (RMSE) and bias. Furthermore, Friedman non-
parametric test was applied in order to compare the
performance of the different models (Friedman,
1940). The test was carried out separately for each
RMSE measure of each fold of the cross-validation
(Stojanova, Panče, Valentin, Andrej, & Sašo, 2010). In
those cases where the null hypothesis of Friedman
test was rejected, which implies that the models were
not equivalent, the Nemenyi (1963) post-hoc test was
used to determine whether the differences between
the models were statistically significant, with a sig-
nificance level of 0.05.

Estimates of biomass losses and conversion to
CO2 emissions into the atmosphere

The estimation of biomass losses was performed in three
phases: (i) wildfire severity estimation, (ii) pre-fire
Aleppo pine forest location mapping and (iii) selection
of burning efficiency factors related to pre-fire vegetation
(De Santis et al., 2010; Oliva & Chuvieco, 2011).

First, wildfire severity was estimated according to
FIREMON methodology (Key & Benson, 2006). NBR
was calculated for pre-fire and post-fire images
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(Equation (2)). Then, the ΔNBR was estimated by the
subtraction of NBR post-fire from NBR pre-fire
(Equation (3)). Subsequently, the burned area was
delimited using this index in a GIS environment.

NBR ¼ ρNIR � ρSWIR

� �
= ρNIR þ ρSWIR

� �
; (2)

ΔNBR ¼ NBRprefire� NBRpostfire; (3)

where ρNIR (near infrared) and ρSWIR (short-wave
infrared) refer to bands 5 and 7 Landsat 8 OLI reflec-
tance, respectively.

In a second phase, the location of pre-fire Aleppo
pine woodland was delimited using the Spanish
National Forest Map (MAGRAMA, 2016b), and the
canopy height model derived from the ALS data
captured previous to fire. In order to improve the
accuracy in forest location, stands less than 2 m high
were excluded from the analysis.

Third, a thorough bibliographic search of burning
efficiency values for Mediterranean conifer forests
was conducted (Deeming, Burgan, & Cohen, 1977;
Miranda et al., 2005). However, few approaches were
suitable to our Mediterranean conifer forests and
most of them assume that forest biomass is consumed
completely (French et al., 2004). The goal of this
study was to obtain spatialized coefficients related to
different burn severity levels. Thus, following De
Santis et al. (2010) methodology, three burning effi-
ciency factors, related to pre-fire vegetation, were
applied considering low, moderate and high severity
levels. The four generic severity ranges proposed by
Key and Benson (2006) (Table 1) were reclassified in
three ranges so as to match with the three burning
efficiency factors. In this regard, the low burning
efficiency value denotes low consumption of the
leaves and very low woody branches consumption;
the moderate burning efficiency value indicates inter-
mediate consumption of the leaves and moderate
consumption of small branches; and the high burning
efficiency value suggests a complete consumption of
the leaves and high loss of small branches and twigs.

The conversion of biomass losses to CO2 emis-
sions requires the estimation of the biomass carbon
content and the application of an emission factor.
The carbon content was computed using a conver-
sion factor of 0.499 set by Montero et al. (2005) for
Aleppo pine. With respect to the emission factors,
several conversion factors have been proposed so as

to estimate different GHG emissions to the atmo-
sphere. In this sense, the account of CO2 emissions
to the atmosphere generated from forest biomass
combustion was obtained according to Trozzi,
Vaccaro, & Piscitello (2002) equation, which includes
the same parameters as the equations established by
IPCC (2006), Levine (2003) and Seiler and Crutzen
(1980) (Equation (4)).

CO2 ¼ ε�δ�C; (4)

where ε is the fraction of total carbon emitted as CO2

(0.888); δ is the factor of conversion from the emis-
sions in ton of carbon to the emissions in ton of CO2

(44/12); and C is the carbon content.

Results

A summary of the field plot characteristics is pre-
sented in Table 2. Inventoried trees present a variety
of diameters, from 14.2 to 28.1 cm, and diverse
heights, ranging from 7.2 to 17.2 m. This accounted
for the variability of biomass in the study area.

All models included two ALS-derived variables:
the percentage of first returns above 2 m (t-test: 8.3)
and the 40th percentile of the return heights (t-test:
4.4), both variables showing a direct and coherent
relation with AGB. The higher value of the variables,
the higher biomass amount.

The regression models to estimate the AGB are
summarized in Table 3. The MLR and the SVM
with radial kernel (cost = 570 and gamma = 0.03)
models presented the lowest RMSE with 6.1 and 7.3
ton/ha, respectively. LWLR regression tree performs
slightly better than SVM with linear kernel (cost = 210
and gamma = 0.01), with RMSE of 8.3 and 8.5 ton/ha,
respectively. Furthermore, the remaining regression
trees as well as RF machine learning (ntrees = 500
and mtry = 1) show a lower accuracy. It should be
added that most of the models present values of bias
close to zero, except from SVM linear kernel, WKNN
and KNN models that show a slight overestimation
with values close to 1.

The performance comparison between the models,
by using Friedman test, indicates that the models are
not equivalent with a p-value of 0.000. However, the
application of post-hoc Nemenyi test shows that only
WKNN (p-value = 0.0) and KNN (p-value = 0.0)
models presents differences statistically significant,
with 95% of probability.

Table 1. Severity levels, ΔNBR generic ranges defined by Key
and Benson (2006), and burning efficiency factors used to
estimate biomass losses following De Santis et al. (2010).
Severity level ΔNBR range Burning efficiency factors

Unburned −100 to +99 0.00
Low severity +100 to +269 0.25
Moderate–low severity +270 to +439 0.42
Moderate–high severity +440 to +659
High severity +660 to +1300 0.57

Table 2. Summary of the field plots characteristics (n = 46;
inventoried trees = 1870).

Min. Max. Range Mean SD

Slope (degrees) 2.5 29.8 27.2 12.8 6.4
Tree height (m) 7.2 17.2 10.0 9.6 1.8
Tree density (tree/ha) 282.9 1202.5 919.6 575.8 237.8
dbh (cm) 14.2 28.1 13.9 18.7 2.8
AGB (ton/ha) 24.4 130.9 106.4 55.4 20.4
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Figure 3 shows the scatter plots of the observed
AGB against the model predictions for the different
regression models. MLR and SVM with radial ker-
nel show consistent results and high coefficient of
determination (0.88 and 0.87, respectively). SVM
with linear kernel and LWLR also present good
coefficient of determination (0.84 and 0.83, respec-
tively). Lower coefficients of determination as well
as less stable results are evidenced in the scatter-
plots for the remaining regression tress, especially
WKNN and KNN.

The implementation of the MLR model (Equation
(5)) in a GIS allowed estimating pre-fire AGB, which
accounts 546,486.7 ton.

PrefireAGB ¼ 1:007�10689:32
�e 0:0158�percentage of first returns above 2mð Þ

�e 0:0713�40th percentile of heightð Þ: (5)

The Aleppo pine forest was burned with a high sever-
ity inmost part of the area, as can be observed in Figure 4
(a). The biomass losses range from 4 ton/ha tomore than
12 ton/ha (Figure 4(b)). As can be observed in Table 4,
high severity areas represent ~60% of Aleppo pine
burned area, accounting ~70% of biomass losses.
Finally, the combustion of Aleppo pine forest in Luna
wildfire emitted 426,754.8 tons of CO2 into the
atmosphere.

Discussion

The use of GHG emissions equations is widely
accepted for accounting forest biomass combustion
by a wildfire (IPCC, 2006; Levine, 2003; Seiler &

Table 3. Summary of the models and the validation results
for the estimated variable in terms of RMSE, relative RMSE (%
RMSE) and bias.

Fitting phase Cross-validation

Predictive model RMSE %RMSE Bias RMSE %RMSE Bias R2

MLR 6.2 11.1 0.1 6.2 11.1 0.0 0.8
SVM radial kernel 6.0 10.8 0.3 7.4 13.3 0.6 0.8
SVM linear kernel 8.0 14.3 1.1 8.5 15.4 1.4 0.8
RF 4.7 8.5 0.2 9.3 16.7 0.5 0.8
LWLR 5.8 10.5 −0.2 8.3 15.0 0.2 0.8
MDL 6.1 11.0 −0.4 8.8 15.9 0.6 0.8
RLM 7.3 13.2 −0.1 9.3 16.7 −0.1 0.8
WKNN 10.7 19.3 0.9 12.7 23.0 1.1 0.6
KNN 11.4 20.6 1.2 12.9 23.2 1.1 0.6

Figure 3. Scatterplot of predicted values vs. observed values for the AGB using different regression methods.
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Crutzen, 1980; Trozzi et al., 2002). Moreover, several
conversion factors as well as emission factors, from
global to regional scales, have been proposed to accu-
rately estimate emissions to the atmosphere.
However, one of the main uncertainties related to
the use of these equations is the account of pre-fire
biomass and biomass losses. In this sense, LiDAR
technology has been proposed as the best technique
to accurately estimate forest structural parameters,
such as biomass, and artificial intelligence methods
have been applied and compared to generate this
variable. Nevertheless, little research has focused on
comparing the performance of several regression
models, including machine learning algorithms and
regression trees, regarding traditional MLR models to
estimate forest parameters.

This study proposes the use of low point density ALS
data to improve the estimation of pre-fire AGB by
comparing a set of state-of-the-art methods and tradi-
tional linear regression methods in a Mediterranean
Aleppo pine forest, considering that biomass estimation
is the key information to compute burning emissions.

The results demonstrate that low-density ALS data
can be used to accurately estimate pre-fire biomass.

The two ALS-derived variables included in the models
were analogous to those proposed by other authors
(i.e. Guerra-Hernández et al., 2016b; Montagnoli et al.,
2015). These variables concern the canopy cover dis-
tribution and the vertical distribution of the point
cloud. The comparison between regression models
shows that the MLR model has the lowest RMSE (6.1
ton/ha) and bias (0.0), matching with the values
obtained by other authors (Gonzalez-Ferreiro et al.,
2012; Montealegre, Lamelas, de la Riva, García-
Martín, & Escribano, 2015c). Consequently, MLR
slightly outperforms other nonparametric methods
supporting Görgens et al. (2015) findings. However,
no statistically significant differences between MLR
and SVM with kernel radial were found. This suggests
that the results partly agree with Gleason and Im
(2012), Gagliasso et al. (2014) and García-Gutiérrez
et al. (2015), who obtained lower estimation errors
with nonparametric techniques, although the later
authors included a relatively high number of indepen-
dent variables in the models. In this sense, the use of a
large number of variables tends to increase the perfor-
mance of the models. Nevertheless, the selection of a
reduced number of biologically representative vari-
ables, especially when computing non-linear regres-
sion models, might generate more understandable
models for forest management purposes. This also
might explain that MLR models outperform other
nonparametric models, considering the number of
variables included in Görgens et al. (2015) models. It
is to notice that, as in the case of several previous
studies (García, Riaño, Chuvieco, & Danson, 2010;
Næsset & Gobakken, 2008; Næsset & Økland, 2002),
it has been necessary to perform a logarithmic

Figure 4. Burn severity estimated in Aleppo pine forest burned in Luna wildfire using ΔNBR index (a). Biomass losses
estimation applying combustion factors (b). High spatial resolution orthophotography (PNOA-2012) (IGN, 2017a) is used as
backdrop.

Table 4. Summary of results obtained for the burned area
concerning to Aleppo pine forest affected by fire, pre-fire
AGB, biomass losses, carbon content and CO2 emissions.

Burn
severity

Aleppo
pine area

(ha)

Pre-fire
AGB
(ton)

Biomass
losses
(ton)

Carbon
content
(ton)

CO2

emissions
(ton)

Unburned 26.8 20,744.3 0.0 0.0 0.0
Low 117.0 36,022.2 9005.5 4493.7 14,631.7
Medium 594.5 169,908.7 71,361.6 35,609.4 115,944.4
High 1034.2 319,811.4 182,292.5 90,963.9 296,178.6
Total 1772.6 546,486.7 262,659.7 131,067.2 426,754.8
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transformation of the dependent variable in order to
meet the assumptions of the linear regression model.

The three-phase approach performed is considered a
suitable option for estimating biomass losses, which
account for 262,659.7 ton. This methodology solves
the lack of post-fire forest structure information derived
from ALS data and constitutes an alternative to field
estimation of burning efficiency, which is laborious,
expensive and requires a detailed knowledge of the
pre-fire scenario (De Santis et al., 2010). The use of
conversion and emission factors for the
Mediterranean basin, included in Trozzi et al. (2002)
equation, enables to accurately estimate CO2 emission
at a regional scale, summing up a total of 426,754.8 ton.

When comparing nonparametric methods and
linear regression models, discrepancies appear. Our
findings show that not always the use of nonpara-
metric methods ensures the best biomass estima-
tions. In this sense, the generation of several
models such as MLR, SVM with radial kernel,
LWLR or SVM with linear kernel might be taken
into account. Furthermore, the use of variable selec-
tion processes should be considered, in order to
determine a limited number of variables which are
biologically representative. Consequently, the use of
new artificial intelligence models and nonparametric
models, which have several advantages for example
no need of normality, should be used within the
forestry and environmental purposes of obtaining
robust and understandable models. The improved
estimation of CO2 emissions from biomass burning,
by including ALS data as relevant information for
computing biomass, is considered to better under-
stand the interactions between fire disturbances and
the emissions to the atmosphere. Nevertheless, it is
to notice that our model does not consider the
emissions generated by combustion of litter, shrubs
and young trees, implying an underestimation of the
total CO2 emissions during wildfire. It was not pos-
sible to estimate these fractions of biomass. In fact,
the few studies developed to estimate shrub biomass
were performed using high-density ALS data or full
waveform LiDAR (Estornell, Ruiz, Veláquez-Martí,
& Hermosilla, 2012; E. Greaves et al., 2016;
Swatantran, Dubayah, Roberts, Hofton, & Bryan
Blair, 2011). Moreover, the majority of them were
developed in areas without tree cover due to the
difficulty of the pulse to penetrate the canopy
(Vosselman & Maas, 2010). In this sense, further
research is needed on the estimation of shrub bio-
mass using low point density ALS data in order to
improve GHG emissions to the atmosphere.

Considering that the findings are site-dependent,
the comparison of different biologically representa-
tive models for biomass estimation at regional scales,
as well as alternative variable selection processes, may
be considered. In this sense, the use of multi-

temporal ALS or multi-temporal series of remote
sensing data might be useful to better understand
the effect of wildfire disturbances to the atmosphere.
It would also be desirable to focus on the account of
CO2 emissions or other GHG gasses generated by
combustion of other Mediterranean species.

Conclusions

This study verifies the usefulness of low-density ALS
data to accurately estimate pre-fire AGB in a mono-
specific Aleppo pine forest, which is relevant infor-
mation to compute biomass losses caused by fire and
CO2 emissions. The comparison of the effectiveness
of a set of state-of-the-art artificial intelligence meth-
ods and traditional linear regression methods is espe-
cially interesting to improve forest parameters
modelling. The best model for pre-fire AGB estima-
tion was the MLR, which included two ALS variables:
the percentage of first returns above 2 m and 40th
percentile of height, presenting an RMSE of 6.1 ton/
ha and a bias of 0.0. No statistically significant differ-
ences between MLR and SVM with kernel radial,
which is the second best model, were found. The
three-phase approach used for biomass losses estima-
tion and the subsequent transformation into CO2

enable to quantify the emissions to the atmosphere
by the combustion of Mediterranean Aleppo pine
forest in Luna wildfire, summing up a total of
426,754.8 ton.
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