000069637 001__ 69637
000069637 005__ 20190709135533.0
000069637 0247_ $$2doi$$a10.1039/c6mh00533k
000069637 0248_ $$2sideral$$a99456
000069637 037__ $$aART-2017-99456
000069637 041__ $$aeng
000069637 100__ $$0(orcid)0000-0003-2095-5843$$aRoubeau, Olivier$$uUniversidad de Zaragoza
000069637 245__ $$aA magnetocaloric composite based on molecular coolers and carbon nanotubes with enhanced thermal conductivity
000069637 260__ $$c2017
000069637 5060_ $$aAccess copy available to the general public$$fUnrestricted
000069637 5203_ $$aIn spite of a remarkably large magnetocaloric effect at temperatures below ca. 10 K, molecular coolers are yet to become excellent magnetic refrigerants. Their main limitation is the heat transport across molecules, which is expected to decrease too drastically at cryogenic temperatures. Here, this prediction is corroborated for the [Gd2(OAc)6(H2O)4]4H2O molecular cooler by thermal conductivity experiments and direct measurements of the magnetocaloric effect, together with numerical simulations. As a way out, a hybrid composite material is formed by attaching carboxylate-bridged Gd(III) molecules onto oxidized multi-walled carbon nanotubes. Notably, the molecular component of this composite maintains a large magnetocaloric effect, while the thermal conductivity of oriented composite buckypapers surpasses that of bulk [Gd2(OAc)6(H2O)4]4H2O by a factor of 2–3 below 20 K. Eventually, direct measurements of the magnetocaloric effect on the composite evidence the benefits arising from its higher thermal conductivity, in the form of relatively lower temperatures reached in magnetic refrigeration experiments, for example 1.2 K vs. 1.5 K, respectively, for the oriented composite buckypapers and bulk molecular cooler, starting from 1.96 K and 1 T applied field.
000069637 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-44063-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-53961-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-70868-ERC$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2015-68204-R
000069637 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000069637 590__ $$a13.183$$b2017
000069637 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b12 / 171 = 0.07$$c2017$$dQ1$$eT1
000069637 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b14 / 285 = 0.049$$c2017$$dQ1$$eT1
000069637 592__ $$a5.025$$b2017
000069637 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ1
000069637 593__ $$aProcess Chemistry and Technology$$c2017$$dQ1
000069637 593__ $$aMechanics of Materials$$c2017$$dQ1
000069637 593__ $$aMaterials Science (miscellaneous)$$c2017$$dQ1
000069637 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000069637 700__ $$0(orcid)0000-0003-2553-0633$$aNatividad, Eva$$uUniversidad de Zaragoza
000069637 700__ $$0(orcid)0000-0002-8028-9064$$aEvangelisti, Marco$$uUniversidad de Zaragoza
000069637 700__ $$0(orcid)0000-0002-4078-6808$$aLorusso, Giulia
000069637 700__ $$0(orcid)0000-0003-3567-7030$$aPalacios, Elías$$uUniversidad de Zaragoza
000069637 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000069637 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000069637 773__ $$g4, 3 (2017), 464-476$$pMater. horizons$$tMaterials Horizons$$x2051-6347
000069637 8564_ $$s3279949$$uhttps://zaguan.unizar.es/record/69637/files/texto_completo.pdf$$yPostprint
000069637 8564_ $$s73644$$uhttps://zaguan.unizar.es/record/69637/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000069637 909CO $$ooai:zaguan.unizar.es:69637$$particulos$$pdriver
000069637 951__ $$a2019-07-09-12:03:29
000069637 980__ $$aARTICLE