000065583 001__ 65583
000065583 005__ 20200117211601.0
000065583 0247_ $$2doi$$a10.1063/1.5011172
000065583 0248_ $$2sideral$$a104183
000065583 037__ $$aART-2018-104183
000065583 041__ $$aeng
000065583 100__ $$aCarreira, S.J.
000065583 245__ $$aTuning the interfacial charge, orbital, and spin polarization properties in La0.67Sr0.33MnO3/La1-xSrxMnO3 bilayers
000065583 260__ $$c2018
000065583 5060_ $$aAccess copy available to the general public$$fUnrestricted
000065583 5203_ $$aThe possibility of controlling the interfacial properties of artificial oxide heterostructures is still attracting researchers in the field of materials engineering. Here, we used surface sensitive techniques and high-resolution transmission electron microscopy to investigate the evolution of the surface spin-polarization and lattice strains across the interfaces between La0.66Sr0.33MnO3 thin films and low-doped manganites as capping layers. We have been able to fine tune the interfacial spin-polarization by changing the capping layer thickness and composition. The spin-polarization was found to be the highest at a critical capping thickness that depends on the Sr doping. We explain the non-trivial magnetic profile by the combined effect of two mechanisms: On the one hand, the extra carriers supplied by the low-doped manganites that tend to compensate the overdoped interface, favouring locally a ferromagnetic double-exchange coupling. On the other hand, the evolution from a tensile-strained structure of the inner layers to a compressed structure at the surface that changes gradually the orbital occupation and hybridization of the 3d-Mn orbitals, being detrimental for the spin polarization. The finding of an intrinsic spin-polarization at the A-site cation observed in x-ray magnetic circular dichroism (XMCD) measurements also reveals the existence of a complex magnetic configuration at the interface, different from the magnetic phases observed at the inner layers.
000065583 536__ $$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 734187-SPICOLOST$$9info:eu-repo/grantAgreement/EC/H2020/734187/EU/Spin conversion, logic storage in oxide-based electronics/SPICOLOST
000065583 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000065583 590__ $$a3.521$$b2018
000065583 591__ $$aPHYSICS, APPLIED$$b31 / 148 = 0.209$$c2018$$dQ1$$eT1
000065583 592__ $$a1.331$$b2018
000065583 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000065583 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000065583 700__ $$0(orcid)0000-0002-1296-4793$$aAguirre, M.H.$$uUniversidad de Zaragoza
000065583 700__ $$aBriatico, J.
000065583 700__ $$aWeschke, E.
000065583 700__ $$aSteren, L.B.
000065583 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000065583 773__ $$g112, 3 (2018), 032401 [5 pp]$$pAppl. phys. lett.$$tAPPLIED PHYSICS LETTERS$$x0003-6951
000065583 8564_ $$s785331$$uhttps://zaguan.unizar.es/record/65583/files/texto_completo.pdf$$yVersión publicada
000065583 8564_ $$s54287$$uhttps://zaguan.unizar.es/record/65583/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000065583 909CO $$ooai:zaguan.unizar.es:65583$$particulos$$pdriver
000065583 951__ $$a2020-01-17-21:12:10
000065583 980__ $$aARTICLE