Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
Financiación H2020 / H2020 FundsFinanciación FP6 / FP6 FundsFinanciación FP7 / Fp7 Funds
Resumen: We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).
Idioma: Inglés
DOI: 10.3762/bjnano.7.162
Año: 2016
Publicado en: BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7 (2016), 1698-1708
ISSN: 2190-4286

Factor impacto JCR: 3.127 (2016)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 66 / 275 = 0.24 (2016) - Q1 - T1
Categ. JCR: PHYSICS, APPLIED rank: 33 / 147 = 0.224 (2016) - Q1 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 37 / 87 = 0.425 (2016) - Q2 - T2

Factor impacto SCIMAGO: 1.137 - Electrical and Electronic Engineering (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Materials Science (miscellaneous) (Q1) - Nanoscience and Nanotechnology (Q2)

Financiación: info:eu-repo/grantAgreement/EUR/FP6-COST/MP1201
Financiación: info:eu-repo/grantAgreement/EC/FP7/618321/EU/Scanning Tunneling Microscopy Studies at High Magnetic Fields: Visualizing Pnictide and Heavy Fermion Superconductivity/ExtremeFieldImaging
Financiación: info:eu-repo/grantAgreement/EC/H2020/679080/EU/Using extreme magnetic field microscopy to visualize correlated electron materials/PNICTEYES
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2014-54498-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2014-51982-C2-1-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2014-51982-C2-2-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MDM-2014-0369
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2020-02-21-13:45:19)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2018-01-18, last modified 2020-02-21


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)