000064315 001__ 64315
000064315 005__ 20200811091507.0
000064315 0247_ $$2doi$$a10.1039/c6cy01884j
000064315 0248_ $$2sideral$$a102757
000064315 037__ $$aART-2016-102757
000064315 041__ $$aeng
000064315 100__ $$0(orcid)0000-0002-0502-7697$$aPalacios, Laura
000064315 245__ $$aMechanistic insight into the pyridine enhanced a-selectivity in alkyne hydrothiolation catalysed by quinolinolate–rhodium(I)–N-heterocyclic carbene complexes
000064315 260__ $$c2016
000064315 5060_ $$aAccess copy available to the general public$$fUnrestricted
000064315 5203_ $$aRhI–NHC–olefin complexes bearing a N,O-quinolinolate bidentate ligand have been prepared from [Rh(µ-OH)(NHC)(¿2-olefin)]2 precursors (olefin = cyclooctene, ethylene). The disposition of the chelate ligand with regard to the carbene in the square planar derivatives is strongly influenced by the steric hindrance exerted by the coordinated olefin. These complexes efficiently catalyzed the addition of thiophenol to phenylacetylene with good selectivity to a-vinyl sulfides, which can be increased up to 97% by addition of pyridine. Several key intermediates have been detected including the ¿1-alkenyl species resulting from alkyne insertion into a Rh–H bond. DFT calculations on the mechanism support a hydrometallation pathway that entails the oxidative addition of thiol, 2,1-insertion of the alkyne into the Rh–H bond, and reductive elimination as the rate-determining step. Remarkably, coordination of pyridine to the ß-alkenyl intermediate but not to the a-alkenyl, which results in a net stabilization, is the key for the Markovnikov selectivity.
000064315 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E07$$9info:eu-repo/grantAgreement/ES/MINECO/Consolider-Ingenio/CSD2009-0050$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2013-42532-P
000064315 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000064315 590__ $$a5.773$$b2016
000064315 591__ $$aCHEMISTRY, PHYSICAL$$b27 / 145 = 0.186$$c2016$$dQ1$$eT1
000064315 592__ $$a1.81$$b2016
000064315 593__ $$aCatalysis$$c2016$$dQ1
000064315 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000064315 700__ $$0(orcid)0000-0002-3666-5800$$aDi Giuseppe, Andrea$$uUniversidad de Zaragoza
000064315 700__ $$aArtigas, María José
000064315 700__ $$0(orcid)0000-0001-5823-7965$$aPolo, Victor$$uUniversidad de Zaragoza
000064315 700__ $$0(orcid)0000-0001-8054-2237$$aLahoz, Fernando J.$$uUniversidad de Zaragoza
000064315 700__ $$0(orcid)0000-0003-4460-8678$$aCastarlenas, Ricardo$$uUniversidad de Zaragoza
000064315 700__ $$0(orcid)0000-0002-3327-0918$$aPérez-Torrente, Jesús J.$$uUniversidad de Zaragoza
000064315 700__ $$0(orcid)0000-0001-7154-7239$$aOro, Luis A.$$uUniversidad de Zaragoza
000064315 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000064315 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000064315 773__ $$g6, 24 (2016), 8548-8561$$pCATALYSIS SCIENCE & TECHNOLOGY$$tCatalysis Science and Technology$$x2044-4753
000064315 8564_ $$s1026271$$uhttps://zaguan.unizar.es/record/64315/files/texto_completo.pdf$$yPostprint
000064315 8564_ $$s124690$$uhttps://zaguan.unizar.es/record/64315/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000064315 909CO $$ooai:zaguan.unizar.es:64315$$particulos$$pdriver
000064315 951__ $$a2020-08-11-09:03:13
000064315 980__ $$aARTICLE