8. ANEXOS

8.1 Instrumentación:

La purificación de los productos finales por cromatografía en columna se ha llevado a cabo empleando una bomba de media presión, modelo Buchi C-605 con controlador C-615 y columnas Buchi de diferentes diámetros, siempre con soporte de silicagel (tamaño de partícula 0,04-0,06 mm).

Los puntos de fusión se han medido en un Gallenkamp, en capilares abiertos.

Los espectros de IR se han llevado a cabo en un espectrofotómetro Perkin Elmer 1600FT en pastilla de KBr. Las vibraciones se expresan en número de ondas (cm⁻¹).

Los espectros de resonancia magnética nuclear (RMN) se han registrado en un Bruker ARX-300, a 75 MHz para ¹³C-RMN; o en un Bruker AV-400, a 400 MHz para ¹H-RMN y a 100 MHz para ¹³C-RMN. Los desplazamientos químicos (δ) se expresan en ppm.

Los espectros de masas ESI⁺ se registraron en un Bruker MicroTOF-Q, usando formiato de sodio como referencia externa, para los espectros de masa exacta.

Los espectros de absorción UV-vis se han realizado en un espectrofotómetro UNICAM UV4. Los resultados se expresan en longitud de onda (nm).

Los experimentos de Voltamperometría Cíclica (VC) se han llevado a cabo en un potenciostato μ -Autolab type III, utilizando como electrodo de trabajo uno de grafito, electrodo de referencia Ag/AgCl, un electrodo de platino como referencia, Bu₄NPF₆ 0,1 M en CH₂Cl₂ como electrolito soporte y velocidad de barrido 100 mV/s.

8.2. Espectros y gráficas

Molécula	Referencia	Espectro	Figura	Pág.
Н		¹ H-RMN	8.1	29
	1-CHO	¹³ C-RMN	8.2	29
s s o		EM (HR-ESI ⁺)	8.3	30
		IR	8.4	30
\ ↓ ↓ /				
н л н		¹ H-RMN	8.5	31
	2-CHO	¹³ C-RMN	8.6	31
o s f s o		EM (HR-ESI ⁺)	8.7	32
		IR	8.8	32
			80	22
		¹³ C-RMN	8 10	33
S S CN	1Δ	FM (HR-FSI ⁺)	8 11	34
NC	10	IR	8 12	34
		UV-Vis	8.13	35
		VC	8.14	36
			0.45	20
			8.15	30
	10		8.10	37
	ID		0.17	20 20
		11X 11\/_\/ic	8.10 8.10	30
		VC	8 20	30
		ve	0.20	55
		¹ H-RMN	8.21	40
		¹³ C-RMN	8.22	40
	1C	EM (HR-ESI⁺)	8.23	41
		IR	8.24	41
		UV-Vis	8.25	42
Ö		VC	8.26	43
			8 27	<u>/</u> 2
		¹³ C-RMN	8.28	44
	24	FM (HR-FSI ⁺)	8 29	44
	273	IR	8.30	45
		UV-Vis	8.31	46
		VC	8.32	46
		¹ H-RMN	8.33	47
		¹³ C-RMN	8.34	47
s ''''s	2B	EM (HR-ESI⁺)	8.35	48
		IR ,	8.36	48
		UV-Vis	8.37	49
			8.38	50
			8.39	50

		VC	8.40	51
		¹ H-RMN	8.41	51
		¹³ C-RMN	8.42	52
	2C	EM (HR-ESI⁺)	8.43	52
S Y S		IR	8.44	53
		UV-Vis	8.45	54
		VC	8.46	54

Figura 8.3. Espectro EM (HR-ESI⁺) de 1-CHO.

Figura 8.4. Espectro de IR de 1-CHO.

Figura 8.8. Espectro de IR de 2-CHO.

Figura 8.12. Espectro de IR de 1A.

Gráfica 8.1. Recta de calibrado para 1A.

Figura 8.13. Espectro de UV-Visible de 1A

Figura 8.14. Voltamperograma de 1A.

Figura 8.15. Espectro de ¹H-RMN de 1B.

Figura 8.17. Espectro EM (HR-ESI⁺) de 1B.

Figura 8.18. Espectro de IR de 1B.

Gráfica 8.2. Recta de calibrado para 1B.

Figura 8.19. Espectro de UV-Visible de 1B.

Figura 8.20. Voltamperograma de 1B.

Figura 8.24. Espectro de IR de 1C.

Gráfica 8.3. Recta de calibrado para 1C.

Figura 8.25. Espectro de UV-Visible de 1C.

Figura 8.27. Espectro de ¹H-RMN de 2A.

Figura 8.28. Espectro de ¹³C-RMN (APT) de 2A.

Figura 8.31. Espectro de UV-Visible de 2A.

Figura 8.32. Voltamperograma de 2A.

Figura 8.35. Espectro EM (HR-ESI⁺) de 2B.

Figura 8.36. Espectro de IR de 2B.

Gráfica 8.5. Recta de calibrado para 2B.

Figura 8.37. Espectro de UV-Visible de 2B en DCM.

Figura 8.38. Espectro de UV-Visible de 2B en DMF.

Figura 8.39. Espectro de UV-Visible de 2B en dioxano.

Figura 8.40. Voltamperograma de 2B.

Figura 8.42. Espectro de ¹³C-RMN (APT) de 2C.

Gráfica 8.6. Recta de calibrado para 2C.

Figura 8.45. Espectro de UV-Visible de 2C.

Figura 8.46. Voltamperograma de 2C.

<u>8.3. Rayos X</u>

Por razones de espacio, se han omitido las tablas de datos de coordenadas atómicas, distancias y ángulos de enlace.

Crystal data and structure refinement for 1A

Empirical formula	C26 H26 N2 O S2	
Formula weight	446.61	
Temperature	150(1) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P 21/n	
Unit cell dimensions	a = 8.6195(3) A alpha = 90 deg.	
	b = 21.1663(6) A beta = 107.473(3) deg.	
	c = 13.5680(4) A gamma = 90 deg.	
Volume	2361.17(13) A^3	
Z, Calculated density	4, 1.256 Mg/m^3	
Absorption coefficient	0.246 mm^-1	
F(000)	944	
Crystal size	0.520 x 0.430 x 0.150 mm	
Theta range for data collection	3.289 to 24.999 deg.	
Limiting indices	-10<=h<=10, -25<=k<=25, -16<=l<=16	
Reflections collected / unique	32987 / 4148 [R(int) = 0.0300]	
Completeness to theta = 25.000 99.8 %		
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.94680	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	4148 / 0 / 289	
Goodness-of-fit on F^2	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0354, wR2 = 0.0852	
R indices (all data)	R1 = 0.0418, wR2 = 0.0893	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.326 and -0.232 e.A^-3	

Figura 8.47. Empaquetamiento de 1A a lo largo del eje a.

Figura 8.48. Empaquetamiento de 1A a lo largo del eje b.

Figura 8.49. Empaquetamiento de 1A a lo largo del eje c.

Figura 8.50. Estructura molecular calculada (método CPCM M062x/6-31G*) del compuesto 1A en DCM.

Figura 8.51. Estructura molecular calculada (método CPCM M062x/6-31G*) del compuesto 2A en DCM

Crystal data and structure refinement for ${\bf 1B}$

Empirical formula	C35 H30 N2 O2 S2
Formula weight	574.73
Temperature	150(1) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/n
Unit cell dimensions	a = 11.728(2) A alpha = 90 deg.
	b = 6.0061(12) A beta = 90.647(19) deg.
	c = 43.409(7) A gamma = 90 deg.
Volume	3057.5(9) A^3
Z, Calculated density	4, 1.249 Mg/m^3
Absorption coefficient	0.208 mm^-1
F(000)	1208
Crystal size	0.510 x 0.050 x 0.030 mm
Theta range for data collection	3.424 to 24.998 deg.
Limiting indices	-13<=h<=13, -6<=k<=7, -51<=l<=50
Reflections collected / unique	17317 / 5113 [R(int) = 0.3068]
Completeness to theta = 25.000	95.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.60273
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5113 / 51 / 379
Goodness-of-fit on F^2	0.917
Final R indices [I>2sigma(I)]	R1 = 0.1060, wR2 = 0.1244
R indices (all data)	R1 = 0.3623, wR2 = 0.2063
Extinction coefficient	n/a
Largest diff. peak and hole	0.326 and -0.320 e.A^-3

59

Figura 8.52. Empaquetamiento de 1B a lo largo del eje a.

Figura 8.53. Empaquetamiento de 1B a lo largo del eje b.

Figura 8.54. Empaquetamiento de 1B a lo largo del eje c.