000063490 001__ 63490
000063490 005__ 20200221144317.0
000063490 0247_ $$2doi$$a10.1115/1.4034425
000063490 0248_ $$2sideral$$a96273
000063490 037__ $$aART-2016-96273
000063490 041__ $$aeng
000063490 100__ $$aChandra, Santanu
000063490 245__ $$aA methodology for the derivation of unloaded abdominal aortic aneurysm geometry with experimental validation
000063490 260__ $$c2016
000063490 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063490 5203_ $$aIn this work, we present a novel method for the derivation of the unloaded geometry of an abdominal aortic aneurysm (AAA) from a pressurized geometry in turn obtained by 3D reconstruction of computed tomography (CT) images. The approach was experimentally validated with an aneurysm phantom loaded with gauge pressures of 80, 120, and 140mm Hg. The unloaded phantom geometries estimated from these pressurized states were compared to the actual unloaded phantom geometry, resulting in mean nodal surface distances of up to 3.9% of the maximum aneurysm diameter. An in-silico verification was also performed using a patient-specific AAA mesh, resulting in maximum nodal surface distances of 8 lm after running the algorithm for eight iterations. The methodology was then applied to 12 patient-specific AAA for which their corresponding unloaded geometries were generated in 5-8 iterations. The wall mechanics resulting from finite element analysis of the pressurized (CT image-based) and unloaded geometries were compared to quantify the relative importance of using an unloaded geometry for AAA biomechanics. The pressurized AAA models underestimate peak wall stress (quantified by the first principal stress component) on average by 15% compared to the unloaded AAA models. The validation and application of the method, readily compatible with any finite element solver, underscores the importance of generating the unloaded AAA volume mesh prior to using wall stress as a biomechanical marker for rupture risk assessment.
000063490 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000063490 590__ $$a2.057$$b2016
000063490 591__ $$aENGINEERING, BIOMEDICAL$$b38 / 77 = 0.494$$c2016$$dQ2$$eT2
000063490 591__ $$aBIOPHYSICS$$b50 / 73 = 0.685$$c2016$$dQ3$$eT3
000063490 592__ $$a0.966$$b2016
000063490 593__ $$aBiomedical Engineering$$c2016$$dQ1
000063490 593__ $$aPhysiology (medical)$$c2016$$dQ2
000063490 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000063490 700__ $$aGnanaruban, Vimalatharmaiyah
000063490 700__ $$aRiveros, Fabian
000063490 700__ $$0(orcid)0000-0001-7612-266X$$aRodriguez, José F.$$uUniversidad de Zaragoza
000063490 700__ $$aFinol, Ender A.
000063490 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000063490 773__ $$g138, 10 (2016), 101005 [11 pp.]$$pJ. biomech. eng.$$tJOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME$$x0148-0731
000063490 8564_ $$s3309426$$uhttps://zaguan.unizar.es/record/63490/files/texto_completo.pdf$$yVersión publicada
000063490 8564_ $$s127531$$uhttps://zaguan.unizar.es/record/63490/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000063490 909CO $$ooai:zaguan.unizar.es:63490$$particulos$$pdriver
000063490 951__ $$a2020-02-21-13:39:53
000063490 980__ $$aARTICLE