000063055 001__ 63055
000063055 005__ 20190709135526.0
000063055 0247_ $$2doi$$a10.1038/s41598-017-10849-2
000063055 0248_ $$2sideral$$a101568
000063055 037__ $$aART-2017-101568
000063055 041__ $$aeng
000063055 100__ $$aBergues-Pupo, A.E.
000063055 245__ $$aMesoscopic model for DNA G-quadruplex unfolding
000063055 260__ $$c2017
000063055 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063055 5203_ $$aGenomes contain rare guanine-rich sequences capable of assembling into four-stranded helical structures, termed G-quadruplexes, with potential roles in gene regulation and chromosome stability. Their mechanical unfolding has only been reported to date by all-atom simulations, which cannot dissect the major physical interactions responsible for their cohesion. Here, we propose a mesoscopic model to describe both the mechanical and thermal stability of DNA G-quadruplexes, where each nucleotide of the structure, as well as each central cation located at the inner channel, is mapped onto a single bead. In this framework we are able to simulate loading rates similar to the experimental ones, which are not reachable in simulations with atomistic resolution. In this regard, we present single-molecule force-induced unfolding experiments by a high-resolution optical tweezers on a DNA telomeric sequence capable of adopting a G-quadruplex conformation. Fitting the parameters of the model to the experiments we find a correct prediction of the rupture-force kinetics and a good agreement with previous near equilibrium measurements. Since G-quadruplex unfolding dynamics is halfway in complexity between secondary nucleic acids and tertiary protein structures, our model entails a nanoscale paradigm for non-equilibrium processes in the cell.
000063055 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2014-55867-P$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-71806-R
000063055 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000063055 590__ $$a4.122$$b2017
000063055 591__ $$aMULTIDISCIPLINARY SCIENCES$$b12 / 64 = 0.188$$c2017$$dQ1$$eT1
000063055 592__ $$a1.533$$b2017
000063055 593__ $$aMultidisciplinary$$c2017$$dQ1
000063055 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000063055 700__ $$aGutiérrez, I.
000063055 700__ $$aArias-Gonzalez, J.R.
000063055 700__ $$0(orcid)0000-0002-9551-624X$$aFalo, F.$$uUniversidad de Zaragoza
000063055 700__ $$0(orcid)0000-0001-6859-099X$$aFiasconaro, A.$$uUniversidad de Zaragoza
000063055 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000063055 773__ $$g7, 11756 (2017), [13 pp]$$pSci. rep.$$tScientific reports$$x2045-2322
000063055 8564_ $$s2803524$$uhttps://zaguan.unizar.es/record/63055/files/texto_completo.pdf$$yVersión publicada
000063055 8564_ $$s115609$$uhttps://zaguan.unizar.es/record/63055/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000063055 909CO $$ooai:zaguan.unizar.es:63055$$particulos$$pdriver
000063055 951__ $$a2019-07-09-11:59:38
000063055 980__ $$aARTICLE