000063024 001__ 63024
000063024 005__ 20180723115225.0
000063024 0247_ $$2doi$$a10.3390/nano7080225
000063024 0248_ $$2sideral$$a101673
000063024 037__ $$aART-2017-101673
000063024 041__ $$aeng
000063024 100__ $$aBonvin, D.
000063024 245__ $$aTuning properties of iron oxide nanoparticles in aqueous synthesis without ligands to improve MRI relaxivity and SAR
000063024 260__ $$c2017
000063024 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063024 5203_ $$aAqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional properties still remains an open issue, because of the challenge to control simultaneously numerous properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the synthesis process with their properties, but this correlation is until now not well understood. Here, we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric and heating properties of IONPs obtained for different durations of the hydrothermal treatment that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous environment without ligands. We find that their properties were different for IONPs with comparable diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles firstly by colloidal and then also by magnetic interactions, we control their crystallinity from monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the transversal magnetic resonance imaging (MRI) relaxivity (up to r2 = 1189 mM-1·s-1 and r2/r1 = 195) and specific absorption rate, SAR (up to 1225.1 W·gFe -1).
000063024 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-54975-R
000063024 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000063024 590__ $$a3.504$$b2017
000063024 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b39 / 91 = 0.429$$c2017$$dQ2$$eT2
000063024 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b71 / 283 = 0.251$$c2017$$dQ2$$eT1
000063024 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000063024 700__ $$aAlexander, D.T.L.
000063024 700__ $$0(orcid)0000-0003-0828-3212$$aMillán, A.$$uUniversidad de Zaragoza
000063024 700__ $$0(orcid)0000-0001-7625-4806$$aPiñol, R.$$uUniversidad de Zaragoza
000063024 700__ $$0(orcid)0000-0002-5578-7635$$aSanz, B.
000063024 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000063024 700__ $$0(orcid)0000-0002-8797-0813$$aMartínez, A.$$uUniversidad de Zaragoza
000063024 700__ $$aBastiaansen, J.A.M.
000063024 700__ $$aStuber, M.
000063024 700__ $$aSchenk, K.J.
000063024 700__ $$aHofmann, H.
000063024 700__ $$aEbersold, M.M.
000063024 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000063024 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000063024 773__ $$g7, 8 (2017), 225 [18 pp]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000063024 8564_ $$s1106707$$uhttps://zaguan.unizar.es/record/63024/files/texto_completo.pdf$$yVersión publicada
000063024 8564_ $$s105656$$uhttps://zaguan.unizar.es/record/63024/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000063024 909CO $$ooai:zaguan.unizar.es:63024$$particulos$$pdriver
000063024 951__ $$a2018-07-23-11:47:31
000063024 980__ $$aARTICLE