000063014 001__ 63014
000063014 005__ 20190709135511.0
000063014 0247_ $$2doi$$a10.1371/journal.pone.0184361
000063014 0248_ $$2sideral$$a101633
000063014 037__ $$aART-2017-101633
000063014 041__ $$aeng
000063014 100__ $$aQuilez, M.P.
000063014 245__ $$aBiomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: A comparison of different implant systems
000063014 260__ $$c2017
000063014 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063014 5203_ $$aThe best methods to manage tibial bone defects following total knee arthroplasty remain under debate. Different fixation systems exist to help surgeons reconstruct knee osseous bone loss (such as tantalum cones, cement, modular metal augments, autografts, allografts and porous metaphyseal sleeves) However, the effects of the various solutions on the long-term outcome remain unknown. In the present work, a bone remodeling mathematical model was used to predict bone remodeling after total knee arthroplasty (TKA) revision. Five different types of prostheses were analyzed: one with a straight stem; two with offset stems, with and without supplements; and two with sleeves, with and without stems. Alterations in tibia bone density distribution and implant Von Mises stresses were quantified. In all cases, the bone density decreased in the proximal epiphysis and medullary channels, and an increase in bone density was predicted in the diaphysis and around stem tips. The highest bone resorption was predicted for the offset prosthesis without the supplement, and the highest bone formation was computed for the straight stem. The highest Von Mises stress was obtained for the straight tibial stem, and the lowest was observed for the stemless metaphyseal sleeves prosthesis. The computational model predicted different behaviors among the five systems. We were able to demonstrate the importance of choosing an adequate revision system and that in silico models may help surgeons choose patient-specific treatments.
000063014 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2014-53401-C2-1-R
000063014 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000063014 590__ $$a2.766$$b2017
000063014 591__ $$aMULTIDISCIPLINARY SCIENCES$$b15 / 64 = 0.234$$c2017$$dQ1$$eT1
000063014 592__ $$a1.164$$b2017
000063014 593__ $$aAgricultural and Biological Sciences (miscellaneous)$$c2017$$dQ1
000063014 593__ $$aMedicine (miscellaneous)$$c2017$$dQ1
000063014 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2017$$dQ1
000063014 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000063014 700__ $$0(orcid)0000-0002-4502-460X$$aSeral, B.$$uUniversidad de Zaragoza
000063014 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, M.A.$$uUniversidad de Zaragoza
000063014 7102_ $$11004$$2830$$aUniversidad de Zaragoza$$bDpto. Cirugía,Ginecol.Obstetr.$$cÁrea Traumatología y Ortopedia
000063014 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000063014 773__ $$g12, 9 (2017), [14 pp]$$pPLoS One$$tPloS one$$x1932-6203
000063014 8564_ $$s7195932$$uhttps://zaguan.unizar.es/record/63014/files/texto_completo.pdf$$yVersión publicada
000063014 8564_ $$s102182$$uhttps://zaguan.unizar.es/record/63014/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000063014 909CO $$ooai:zaguan.unizar.es:63014$$particulos$$pdriver
000063014 951__ $$a2019-07-09-11:51:56
000063014 980__ $$aARTICLE