000062073 001__ 62073
000062073 005__ 20190709135440.0
000062073 0247_ $$2doi$$a10.1039/c7sc00223h
000062073 0248_ $$2sideral$$a101137
000062073 037__ $$aART-2017-101137
000062073 041__ $$aeng
000062073 100__ $$aNúñez, J.D.
000062073 245__ $$aGraphene oxide-carbon nanotube hybrid assemblies: Cooperatively strengthened OH¿O=C hydrogen bonds and the removal of chemisorbed water
000062073 260__ $$c2017
000062073 5060_ $$aAccess copy available to the general public$$fUnrestricted
000062073 5203_ $$aOwing to their great significance for energy storage and sensing applications, multi-layer papers consisting of graphene oxide-carbon nanotube (GO-CNT) hybrid sheets were prepared by in situ exfoliation of graphite oxide in the presence of oxidized CNTs (oCNTs). For the first time we elucidate the influence of oCNTs on chemisorbed water (CW), i.e. the water molecules inherently bound to the oxygen functional groups (OFGs) of graphene oxide (GO) and responsible for irreversible structural damage upon thermal reduction processes. We show that oCNTs self-assemble onto GO sheets during the liquid phase processing steps by forming cooperatively strengthened OH¿OC hydrogen bonds between the carboxylic groups of the oCNTs and OFGs of GO. At oCNT amounts of about 10 to 15 wt% this leads to the displacement of considerable amounts of CW without altering the original chemical composition of GO. The thermally reduced GO-CNT (rGO-CNT) papers reveal improved sp2 character and an enhancement of the specific capacitance by 75% with respect to thermally reduced GO (rGO), largely due to the effective removal of CW by oxidized CNTs. These findings disclose the relevance of the cooperative hydrogen bonding phenomena in graphene oxide paper/film electrodes for the development of improved electrochemical energy storage and sensing devices.
000062073 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-79776-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-3-P$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-79282-C5-1-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2013-48816-C5-5-R$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 696656-GrapheneCore1$$9info:eu-repo/grantAgreement/EC/H2020/696656/EU/Graphene-based disruptive technologies/GrapheneCore1$$9info:eu-repo/grantAgreement/EC/FP7/312483/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM 2$$9info:eu-repo/grantAgreement/ES/DGA/T66
000062073 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000062073 590__ $$a9.063$$b2017
000062073 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b18 / 171 = 0.105$$c2017$$dQ1$$eT1
000062073 592__ $$a4.508$$b2017
000062073 593__ $$aChemistry (miscellaneous)$$c2017$$dQ1
000062073 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000062073 700__ $$0(orcid)0000-0002-8654-7386$$aBenito, A.M.
000062073 700__ $$aRouzière, S.
000062073 700__ $$aLaunois, P.
000062073 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza
000062073 700__ $$aAjayan, P.M.
000062073 700__ $$aMaser, W.K.
000062073 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000062073 773__ $$g8, 7 (2017), 4987-4995$$pChem. sci.$$tCHEMICAL SCIENCE$$x2041-6520
000062073 8564_ $$s2116893$$uhttps://zaguan.unizar.es/record/62073/files/texto_completo.pdf$$yVersión publicada
000062073 8564_ $$s113260$$uhttps://zaguan.unizar.es/record/62073/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000062073 909CO $$ooai:zaguan.unizar.es:62073$$particulos$$pdriver
000062073 951__ $$a2019-07-09-11:35:48
000062073 980__ $$aARTICLE