000062046 001__ 62046
000062046 005__ 20200221144255.0
000062046 0247_ $$2doi$$a10.1016/j.fuproc.2016.08.030
000062046 0248_ $$2sideral$$a96666
000062046 037__ $$aART-2016-96666
000062046 041__ $$aeng
000062046 100__ $$0(orcid)0000-0003-3315-5933$$aRemón, J.
000062046 245__ $$aBio-oil upgrading in supercritical water using Ni-Co catalysts supported on carbon nanofibres
000062046 260__ $$c2016
000062046 5060_ $$aAccess copy available to the general public$$fUnrestricted
000062046 5203_ $$aThis work addresses the preparation, characterisation and screening of different Ni-Co catalysts supported on carbon nanofibres (CNFs) for use in the upgrading of bio-oil in supercritical water. The aim is to improve the physicochemical properties of bio-oil so that it can be used as a fuel. The CNFs were firstly oxidised in HNO3 and afterwards subjected to a thermal treatment to selectively modify their surface chemistry prior to the incorporation of the metal active phase (Ni-Co). The CNFs and the supported catalysts were thoroughly characterised by several techniques, which allowed a relationship to be established between the catalyst properties and the upgrading results. The use of Ni-Co/CNFs for bio-oil upgrading in supercritical water (SCW) significantly improved the properties of the original feedstock. In addition, the thermal treatment to which the fibres were subjected exerted a significant influence on their catalytic properties. An increase in the severity of the thermal treatment led to a substantial reduction in the oxygen content of the CNFs, mainly due to the removal of the less stable oxygen surface groups, which allowed their surface polarity to decrease. This decrease resulted in less formation of solid products. However, it also reduced the H/C and increased the O/C ratios of the upgraded liquid. Therefore, a compromise between the yield and the properties of the upgraded bio-oil was achieved with a Ni-Co supported on a CNF with a moderate amount of oxygen surface groups.
000062046 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BES-2011-044856$$9info:eu-repo/grantAgreement/ES/MINECO/EEBB-I-14-08688$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2010-18985$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2011-28318$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-41523-R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2014-52189-C2-1-R
000062046 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000062046 590__ $$a3.752$$b2016
000062046 591__ $$aCHEMISTRY, APPLIED$$b8 / 72 = 0.111$$c2016$$dQ1$$eT1
000062046 591__ $$aENGINEERING, CHEMICAL$$b17 / 135 = 0.126$$c2016$$dQ1$$eT1
000062046 591__ $$aENERGY & FUELS$$b23 / 92 = 0.25$$c2016$$dQ1$$eT1
000062046 592__ $$a1.397$$b2016
000062046 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000062046 593__ $$aFuel Technology$$c2016$$dQ1
000062046 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ1
000062046 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000062046 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, J.$$uUniversidad de Zaragoza
000062046 700__ $$0(orcid)0000-0001-7115-9025$$aGarcía, L.$$uUniversidad de Zaragoza
000062046 700__ $$aArcelus-Arrillaga, P.
000062046 700__ $$aMillan, M.
000062046 700__ $$aSuelves, I.
000062046 700__ $$aPinilla, J. L.
000062046 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000062046 773__ $$g154 (2016), [36 pp.]$$pFuel process. technol.$$tFuel Processing Technology$$x0378-3820
000062046 8564_ $$s1187626$$uhttps://zaguan.unizar.es/record/62046/files/texto_completo.pdf$$yPostprint
000062046 8564_ $$s73982$$uhttps://zaguan.unizar.es/record/62046/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000062046 909CO $$ooai:zaguan.unizar.es:62046$$particulos$$pdriver
000062046 951__ $$a2020-02-21-13:29:33
000062046 980__ $$aARTICLE