000062041 001__ 62041
000062041 005__ 20190709135531.0
000062041 0247_ $$2doi$$a10.1371/journal.pone.0173228
000062041 0248_ $$2sideral$$a98444
000062041 037__ $$aART-2017-98444
000062041 041__ $$aeng
000062041 100__ $$aBerli, M.
000062041 245__ $$aLocalized tissue mineralization regulated by bone remodelling: A computational approach
000062041 260__ $$c2017
000062041 5060_ $$aAccess copy available to the general public$$fUnrestricted
000062041 5203_ $$aBone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent-material density curve. Numerical results are discussed pointing to potential clinical applications.
000062041 536__ $$9info:eu-repo/grantAgreement/EUR/FP7/ERC2012-StG-306751$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-64221-C2-1-R
000062041 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000062041 590__ $$a2.766$$b2017
000062041 591__ $$aMULTIDISCIPLINARY SCIENCES$$b15 / 64 = 0.234$$c2017$$dQ1$$eT1
000062041 592__ $$a1.164$$b2017
000062041 593__ $$aAgricultural and Biological Sciences (miscellaneous)$$c2017$$dQ1
000062041 593__ $$aMedicine (miscellaneous)$$c2017$$dQ1
000062041 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2017$$dQ1
000062041 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000062041 700__ $$0(orcid)0000-0002-3784-1140$$aBorau, C.$$uUniversidad de Zaragoza
000062041 700__ $$aDecco, O.
000062041 700__ $$aAdams, G.
000062041 700__ $$aCook, R. B.
000062041 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía Aznar, J. M.$$uUniversidad de Zaragoza
000062041 700__ $$aZioupos, P.
000062041 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000062041 773__ $$g12, 3 (2017), e017322 [19 pp]$$pPLoS One$$tPloS one$$x1932-6203
000062041 8564_ $$s2327700$$uhttps://zaguan.unizar.es/record/62041/files/texto_completo.pdf$$yVersión publicada
000062041 8564_ $$s105284$$uhttps://zaguan.unizar.es/record/62041/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000062041 909CO $$ooai:zaguan.unizar.es:62041$$particulos$$pdriver
000062041 951__ $$a2019-07-09-12:02:28
000062041 980__ $$aARTICLE