000062004 001__ 62004
000062004 005__ 20200221144224.0
000062004 0247_ $$2doi$$a10.1021/acs.energyfuels.6b01271
000062004 0248_ $$2sideral$$a96853
000062004 037__ $$aART-2016-96853
000062004 041__ $$aeng
000062004 100__ $$0(orcid)0000-0002-1458-8920$$aViteri Moya, Fausto
000062004 245__ $$aEffect of the presence of hydrogen sulphide on the formation of light gases, soot and PAH during the pyrolysis of ethylene
000062004 260__ $$c2016
000062004 5060_ $$aAccess copy available to the general public$$fUnrestricted
000062004 5203_ $$aThe formation of light gases, soot, and 16 polycyclic aromatic hydrocarbons (EPA-PAH), classified as priority pollutants by the United States Environmental Protection Agency (USEPA), has been studied during the pyrolysis of mixtures of ethylene with hydrogen sulfide (H2S) in a tubular flow reactor setup. The study was made using a constant concentration of ethylene and different inlet concentrations of H2S, in a temperature range from 1075 to 1475 K. The light gases produced were quantified by a chromatographic method. The soot amount formed was also quantified at the outlet of the reactor. The speciation of the individual EPA-PAH compounds was made by a combination of Soxhlet extraction, extract concentration by a rotary evaporator, and gas chromatography coupled to mass spectrometry. The present study shows that, under pyrolysis conditions, there is an effective interaction between H2S and hydrocarbons, forming significant amounts of CS2 and bonding sulfur to soot. The presence of H2S in the pyrolysis of ethylene contributes to slightly decrease the formation of soot and EPA- PAH, which indicates a positive effect of the sulfur compound under pyrolysis conditions.
000062004 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-65226
000062004 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000062004 590__ $$a3.091$$b2016
000062004 591__ $$aENGINEERING, CHEMICAL$$b27 / 135 = 0.2$$c2016$$dQ1$$eT1
000062004 591__ $$aENERGY & FUELS$$b33 / 92 = 0.359$$c2016$$dQ2$$eT2
000062004 592__ $$a1.258$$b2016
000062004 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000062004 593__ $$aFuel Technology$$c2016$$dQ1
000062004 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ1
000062004 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000062004 700__ $$aSánchez, Adrián
000062004 700__ $$0(orcid)0000-0001-5426-6486$$aMillera, Ángela$$uUniversidad de Zaragoza
000062004 700__ $$0(orcid)0000-0002-5420-0943$$aBilbao, Rafael$$uUniversidad de Zaragoza
000062004 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, María U.$$uUniversidad de Zaragoza
000062004 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000062004 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000062004 773__ $$g30, 11 (2016), 9745–9751$$pEnergy fuels$$tEnergy and Fuels$$x0887-0624
000062004 8564_ $$s1121278$$uhttps://zaguan.unizar.es/record/62004/files/texto_completo.pdf$$yPostprint
000062004 8564_ $$s138632$$uhttps://zaguan.unizar.es/record/62004/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000062004 909CO $$ooai:zaguan.unizar.es:62004$$particulos$$pdriver
000062004 951__ $$a2020-02-21-13:16:49
000062004 980__ $$aARTICLE