000061955 001__ 61955
000061955 005__ 20190709135420.0
000061955 0247_ $$2doi$$a10.1016/j.jmbbm.2016.08.026
000061955 0248_ $$2sideral$$a96207
000061955 037__ $$aART-2017-96207
000061955 041__ $$aeng
000061955 100__ $$0(orcid)0000-0002-2231-1542$$aGarijo Millán, Noelia
000061955 245__ $$aSubject-specific musculoskeletal loading of the tibia: Computational load estimation
000061955 260__ $$c2017
000061955 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061955 5203_ $$aThe systematic development of subject-specific computer models for the analysis of personalized treatments is currently a reality. In fact, many advances have recently been developed for creating virtual finite element-based models. These models accurately recreate subject-specific geometries and material properties from recent techniques based on quantitative image analysis. However, to determine the subject-specific forces, we need a full gait analysis, typically in combination with an inverse dynamics simulation study. In this work, we aim to determine the subject-specific forces from the computer tomography images used to evaluate bone density. In fact, we propose a methodology that combines these images with bone remodelling simulations and artificial neural networks. To test the capability of this novel technique, we quantify the personalized forces for five subject-specific tibias using our technique and a gait analysis. We compare both results, finding that similar vertical loads are estimated by both methods and that the dominant part of the load can be reliably computed. Therefore, we can conclude that the numerical-based technique proposed in this work has great potential for estimating the main forces that define the mechanical behaviour of subject-specific bone.
000061955 536__ $$9info:eu-repo/grantAgreement/EC/FP7/306571/EU/Predictive modelling and simulation in mechano-chemo-biology: a computer multi-approach/INSILICO-CELL$$9info:eu-repo/grantAgreement/EC/FP7/286179/EU/Patient-specific predictions for bone treatments/CAD-BONE
000061955 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000061955 590__ $$a3.239$$b2017
000061955 591__ $$aENGINEERING, BIOMEDICAL$$b18 / 78 = 0.231$$c2017$$dQ1$$eT1
000061955 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b15 / 33 = 0.455$$c2017$$dQ2$$eT2
000061955 592__ $$a0.958$$b2017
000061955 593__ $$aBiomedical Engineering$$c2017$$dQ1
000061955 593__ $$aMechanics of Materials$$c2017$$dQ1
000061955 593__ $$aBiomaterials$$c2017$$dQ2
000061955 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000061955 700__ $$aVerdonschotb, Nico
000061955 700__ $$aEngelborghsd, Koen
000061955 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, Jose Manuel$$uUniversidad de Zaragoza
000061955 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, Mª Angeles$$uUniversidad de Zaragoza
000061955 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000061955 773__ $$g65 (2017), 334–343$$pJ. mech. behav. boomed. mater.$$tJournal of the Mechanical Behavior of Biomedical Materials$$x1751-6161
000061955 8564_ $$s1426824$$uhttps://zaguan.unizar.es/record/61955/files/texto_completo.pdf$$yPostprint
000061955 8564_ $$s61989$$uhttps://zaguan.unizar.es/record/61955/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000061955 909CO $$ooai:zaguan.unizar.es:61955$$particulos$$pdriver
000061955 951__ $$a2019-07-09-11:26:07
000061955 980__ $$aARTICLE