000061589 001__ 61589
000061589 005__ 20200221144257.0
000061589 0247_ $$2doi$$a10.1021/acsnano.6b02218
000061589 0248_ $$2sideral$$a96719
000061589 037__ $$aART-2016-96719
000061589 041__ $$aeng
000061589 100__ $$0(orcid)0000-0002-8125-877X$$aMartínez-Pérez, M.J.
000061589 245__ $$aThree-Axis Vector Nano Superconducting Quantum Interference Device
000061589 260__ $$c2016
000061589 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061589 5203_ $$aWe present the design, realization, and performance of a three-axis vector nano superconducting quantum interference device (nanoSQUID). It consists of three mutually orthogonal SQUID nanoloops that allow distinguishing the three components of the vector magnetic moment of individual nanoparticles placed at a specific position. The device is based on Nb/HfTi/Nb Josephson junctions and exhibits line widths of ~250 nm and inner loop areas of 600 × 90 and 500 × 500 nm2. Operation at temperature T = 4.2 K under external magnetic fields perpendicular to the substrate plane up to ~50 mT is demonstrated. The experimental flux noise below ~250nF0/vHz in the white noise limit and the reduced dimensions lead to a total calculated spin sensitivity of ~630µB/vHz and ~70µB/vHz for the in-plane and out-of-plane components of the vector magnetic moment, respectively. The potential of the device for studying three-dimensional properties of individual nanomagnets is discussed.
000061589 536__ $$9info:eu-repo/grantAgreement/EUR/FP6-COST/MP1201
000061589 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000061589 590__ $$a13.942$$b2016
000061589 591__ $$aCHEMISTRY, PHYSICAL$$b5 / 145 = 0.034$$c2016$$dQ1$$eT1
000061589 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b4 / 87 = 0.046$$c2016$$dQ1$$eT1
000061589 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b9 / 166 = 0.054$$c2016$$dQ1$$eT1
000061589 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b9 / 275 = 0.033$$c2016$$dQ1$$eT1
000061589 592__ $$a6.948$$b2016
000061589 593__ $$aEngineering (miscellaneous)$$c2016$$dQ1
000061589 593__ $$aPhysics and Astronomy (miscellaneous)$$c2016$$dQ1
000061589 593__ $$aNanoscience and Nanotechnology$$c2016$$dQ1
000061589 593__ $$aMaterials Science (miscellaneous)$$c2016$$dQ1
000061589 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000061589 700__ $$aGella, D.
000061589 700__ $$aMüller, B.
000061589 700__ $$aMorosh, V.
000061589 700__ $$aWölbing, R.
000061589 700__ $$0(orcid)0000-0002-7742-9329$$aSesé, J.$$uUniversidad de Zaragoza
000061589 700__ $$aKieler, O.
000061589 700__ $$aKleiner, R.
000061589 700__ $$aKoelle, D.
000061589 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000061589 773__ $$g10, 9 (2016), 8308-8315$$pACS Nano$$tACS Nano$$x1936-0851
000061589 8564_ $$s1556784$$uhttps://zaguan.unizar.es/record/61589/files/texto_completo.pdf$$yPostprint
000061589 8564_ $$s71727$$uhttps://zaguan.unizar.es/record/61589/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000061589 909CO $$ooai:zaguan.unizar.es:61589$$particulos$$pdriver
000061589 951__ $$a2020-02-21-13:30:23
000061589 980__ $$aARTICLE