000061504 001__ 61504
000061504 005__ 20210902121558.0
000061504 0247_ $$2doi$$a10.1016/j.fuel.2017.01.031
000061504 0248_ $$2sideral$$a97897
000061504 037__ $$aART-2017-97897
000061504 041__ $$aeng
000061504 100__ $$0(orcid)0000-0001-9967-5806$$aPeña, B.$$uUniversidad de Zaragoza
000061504 245__ $$aAnalysis of thermal resistance evolution of ash deposits during co-firing of coal with biomass and coal mine waste residues
000061504 260__ $$c2017
000061504 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061504 5203_ $$aCo-firing biomass or waste fuels with coal in conventional thermal plants is a promising way to reduce environmental impact of human activities with an acceptable economic investment. One of the main issues to be addressed is the worsening in ash fouling and the reduction of heat transfer rate. In the present paper, the deposits thermal resistance during direct combustion of different blends of coal and various native fuels is investigated by using a deposition probe, kept at 550 °C in order to emulate the conditions of superheaters of conventional power units. Two energy crops (Cynara cardunculus L. and Populus spp.), a forest residue (Pinus pinaster) and a waste coal (coal mine waste residues) were successfully tested in a semi-industrial scale pilot plant. A thermal model of the probe is presented to estimate heat transfer rate and thermal resistance of ash deposits. After the validation with experimental data, a sensitivity analysis allows to identify the deposit surface emissivity and the flue gas temperature as the most influential parameters. The heat uptake in air flow decreases with time for all the experimental tests in spite of the increase in flue gas and walls temperatures. Except for poplar blends, under similar operation conditions, a rise in the substitution percentage means faster decreasing rates in heat transfer and higher thermal resistance due to the ash deposits, especially for cynara and coal mine waste residues. The present work demonstrates the usefulness of thermal models to estimate the thermal resistance of ash deposits without the need of sophisticated instrumentation. Dedicated thermal models, similar to the developed one, could serve to design smart cleaning sequences to improve efficiency in power generation processes.
000061504 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-48003-R$$9info:eu-repo/grantAgreement/ES/MINECO/IPT-2012-0251-120000
000061504 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000061504 590__ $$a4.908$$b2017
000061504 591__ $$aENGINEERING, CHEMICAL$$b13 / 137 = 0.095$$c2017$$dQ1$$eT1
000061504 591__ $$aENERGY & FUELS$$b19 / 97 = 0.196$$c2017$$dQ1$$eT1
000061504 592__ $$a1.891$$b2017
000061504 593__ $$aChemical Engineering (miscellaneous)$$c2017$$dQ1
000061504 593__ $$aOrganic Chemistry$$c2017$$dQ1
000061504 593__ $$aFuel Technology$$c2017$$dQ1
000061504 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1
000061504 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000061504 700__ $$0(orcid)0000-0002-6210-1099$$aBartolomé, C.
000061504 700__ $$0(orcid)0000-0002-0704-4685$$aGil, A.$$uUniversidad de Zaragoza
000061504 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000061504 773__ $$g194 (2017), 357-367$$pFuel$$tFuel$$x0016-2361
000061504 8564_ $$s2297437$$uhttps://zaguan.unizar.es/record/61504/files/texto_completo.pdf$$yPreprint
000061504 8564_ $$s81422$$uhttps://zaguan.unizar.es/record/61504/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000061504 909CO $$ooai:zaguan.unizar.es:61504$$particulos$$pdriver
000061504 951__ $$a2021-09-02-08:33:10
000061504 980__ $$aARTICLE