000061499 001__ 61499
000061499 005__ 20170612112602.0
000061499 0247_ $$2doi$$a10.1186/1471-2164-15-697
000061499 0248_ $$2sideral$$a98812
000061499 037__ $$aART-2014-98812
000061499 041__ $$aeng
000061499 100__ $$0(orcid)0000-0001-8504-0340$$aLopez-Gomollon, S.$$uUniversidad de Zaragoza
000061499 245__ $$aGlobal discovery and characterization of small non-coding RNAs in marine microalgae
000061499 260__ $$c2014
000061499 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061499 5203_ $$aBackground: Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. Results: Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. Conclusions: This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and maybe used for acclimation to environmental conditions.
000061499 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000061499 590__ $$a3.986$$b2014
000061499 591__ $$aGENETICS & HEREDITY$$b39 / 166 = 0.235$$c2014$$dQ1$$eT1
000061499 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b26 / 163 = 0.16$$c2014$$dQ1$$eT1
000061499 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061499 700__ $$aBeckers, M.
000061499 700__ $$aRathjen, T.
000061499 700__ $$aMoxon, S.
000061499 700__ $$aMaumus, F.
000061499 700__ $$aMohorianu, I.
000061499 700__ $$aMoulton, V.
000061499 700__ $$aDalmay, T.
000061499 700__ $$aMock, T.
000061499 7102_ $$11002$$2412$$aUniversidad de Zaragoza$$bDepartamento de Bioquímica y Biología Molecular y Celular$$cFisiología Vegetal
000061499 773__ $$g15, 1 (2014), 697 [12 pp]$$pBMC genomics$$tBMC Genomics$$x1471-2164
000061499 8564_ $$s1618614$$uhttps://zaguan.unizar.es/record/61499/files/texto_completo.pdf$$yVersión publicada
000061499 8564_ $$s109673$$uhttps://zaguan.unizar.es/record/61499/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061499 909CO $$ooai:zaguan.unizar.es:61499$$particulos$$pdriver
000061499 951__ $$a2017-06-12-09:40:30
000061499 980__ $$aARTICLE