000061466 001__ 61466
000061466 005__ 20201113085627.0
000061466 0247_ $$2doi$$a10.1103/PhysRevB.88.085130
000061466 0248_ $$2sideral$$a83214
000061466 037__ $$aART-2013-83214
000061466 041__ $$aeng
000061466 100__ $$0(orcid)0000-0001-8303-932X$$aLafuerza, S.
000061466 245__ $$aIntrinsic electrical properties of LuFe2O4
000061466 260__ $$c2013
000061466 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061466 5203_ $$aWe here revisit the electrical properties of LuFe2O4, compound candidate for exhibiting multiferroicity. Measurements of dc electrical resistivity as a function of temperature, electric-field polarization measurements at low temperatures with and without magnetic field, and complex impedance as a function of both frequency and temperature were carried out in a LuFe2O4 single crystal, perpendicular and parallel to the hexagonal c axis, and in several ceramic polycrystalline samples. Resistivity measurements reveal that this material is a highly anisotropic semiconductor, being about two orders of magnitude more resistive along the c axis. The temperature dependence of the resistivity indicates a change in the conduction mechanism at TCO ˜ 320 K from thermal activation above TCO to variable range hopping below TCO. The resistivity values at room temperature are relatively small and are below 5000 O¿cm for all samples but we carried out polarization measurements at sufficiently low temperatures, showing that electric-field polarization curves are a straight line as expected for a paraelectric or antiferroelectric material. Furthermore, no differences are found in the polarization curves when a magnetic field is applied either parallel or perpendicular to the electric field. The analysis of the complex impedance data corroborates that the claimed colossal dielectric constant is a spurious effect mainly derived from the capacitance of the electrical contacts. Therefore, our data unequivocally evidence that LuFe2O4 is not ferroelectric.
000061466 536__ $$9info:eu-repo/grantAgreement/ES/DGA/CAMRADS$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2012-38213-C02-01
000061466 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000061466 590__ $$a3.664$$b2013
000061466 591__ $$aPHYSICS, CONDENSED MATTER$$b14 / 67 = 0.209$$c2013$$dQ1$$eT1
000061466 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061466 700__ $$aGarcía, J.
000061466 700__ $$0(orcid)0000-0002-9029-1977$$aSubías, G.
000061466 700__ $$0(orcid)0000-0002-9706-3272$$aBlasco, J.$$uUniversidad de Zaragoza
000061466 700__ $$aConder, K.
000061466 700__ $$aPomjakushina, E.
000061466 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000061466 773__ $$g88, 8 (2013), 085130 [7 pp]$$pPhys. Rev. B, Condens. matter mater. phys.$$tPhysical Review B$$x1098-0121
000061466 8564_ $$s452976$$uhttps://zaguan.unizar.es/record/61466/files/texto_completo.pdf$$yVersión publicada
000061466 8564_ $$s138462$$uhttps://zaguan.unizar.es/record/61466/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061466 909CO $$ooai:zaguan.unizar.es:61466$$particulos$$pdriver
000061466 951__ $$a2020-11-13-08:46:34
000061466 980__ $$aARTICLE