000060884 001__ 60884
000060884 005__ 20170612100523.0
000060884 0247_ $$2doi$$a10.1073/pnas.1206681109
000060884 0248_ $$2sideral$$a78279
000060884 037__ $$aART-2012-78279
000060884 041__ $$aeng
000060884 100__ $$0(orcid)0000-0002-9769-8796$$aGracia-Lazaro, C.
000060884 245__ $$aHeterogeneous networks do not promote cooperation when humans play a prisoner's dilemma
000060884 260__ $$c2012
000060884 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060884 5203_ $$aIt is not fully understood why we cooperate with strangers on a daily basis. In an increasingly global world, where interaction networks and relationships between individuals are becoming more complex, different hypotheses have been put forward to explain the foundations of human cooperation on a large scale and to account for the true motivations that are behind this phenomenon. In this context, population structure has been suggested to foster cooperation in social dilemmas, but theoretical studies of this mechanism have yielded contradictory results so far; additionally, the issue lacks a proper experimental test in large systems. We have performed the largest experiments to date with humans playing a spatial Prisoner’s Dilemma on a lattice and a scale-free network (1,229 subjects). We observed that the level of cooperation reached in both networks is the same, comparable with the level of cooperation of smaller networks or unstructured populations. We have also found that subjects respond to the cooperation that they observe in a reciprocal manner, being more likely to cooperate if, in the previous round, many of their neighbors and themselves did so, which implies that humans do not consider neighbors’ payoffs when making their decisions in this dilemma but only their actions. Our results, which are in agreement with recent theoretical predictions based on this behavioral rule, suggest that population structure has little relevance as a cooperation promoter or inhibitor among humans.
000060884 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FENOL-GROUP$$9info:eu-repo/grantAgreement/ES/MICINN/FIS2009-13364-C02-01$$9info:eu-repo/grantAgreement/ES/MINECO/Complexity-NET RESINEE$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2008-01240$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2009-12648-C03-02$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2011-25167$$9info:eu-repo/grantAgreement/ES/MINECO/MOSAICO$$9info:eu-repo/grantAgreement/ES/MINECO/PRODIEVO
000060884 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000060884 590__ $$a9.737$$b2012
000060884 591__ $$aMULTIDISCIPLINARY SCIENCES$$b4 / 56 = 0.071$$c2012$$dQ1$$eT1
000060884 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000060884 700__ $$0(orcid)0000-0003-4140-2981$$aFerrer, A.
000060884 700__ $$0(orcid)0000-0002-0342-0225$$aRuiz, G.
000060884 700__ $$0(orcid)0000-0003-2772-3762$$aTarancon, A.$$uUniversidad de Zaragoza
000060884 700__ $$aCuesta, J.A.
000060884 700__ $$aSanchez, A.
000060884 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Y.$$uUniversidad de Zaragoza
000060884 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDepartamento de Física Teórica$$cFísica Teórica
000060884 773__ $$g109, 32 (2012), 12922-12926$$pProc. Natl. Acad. Sci.$$tProceedings of the National Academy of Sciences$$x0027-8424
000060884 8564_ $$s589201$$uhttp://zaguan.unizar.es/record/60884/files/texto_completo.pdf$$yVersión publicada
000060884 8564_ $$s150574$$uhttp://zaguan.unizar.es/record/60884/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000060884 909CO $$ooai:zaguan.unizar.es:60884$$particulos$$pdriver
000060884 951__ $$a2017-06-12-09:55:34
000060884 980__ $$aARTICLE