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ABSTRACT 

We have evaluated the distribution and extent of sea bottom vegetation divided in three 

groups: Diatoms, macrovegetation and filamentous algae in the Gulf of Bothnia, northernmost 

area of the Baltic Sea, and relate the increment in the distribution of the filamentous algae 

with the increasing problem of the eutrophication. The distribution modeling of these groups 

of species has been done by combining data from species abundance (distribution data) with 

GIS environmental raster variables based of environmental information in a binomial model to 

predict the spatial probability of each group of species using MatLab and the GPstuff toolbox. 

From all the variables used the most important ones were the bottom type and variables 

related to the exposure of an area (weighted fetch, number of islands and distance to shallow 

waters) to explain the predicted distribution of the group of the species. It is shown that the 

main group of species in the Gulf of Bothnia is the filamentous algae, with and elevated 

predicted probability in almost all the Gulf of Bothnia. Preferring hard bottoms like rock or 

stones and exposed areas, the number of filamentous algae is increasing every year, reducing 

macrovegetation populations into more protected areas. The number of nutrients and 

filamentous algae has increased in the last decades. We discuss a relation between evolution 

of eutrophication and the increase of filamentous algae, which follows the same south to 

north and west to east gradients, been the south and west more eutrophied. This work aims to 

be a tool to assess the environmental protection and coastal management of eutrophication 

by predicting the probability of presence of the different vegetation groups and analysing the 

relation of these groups with the eutrophication. 
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INTRODUCTION 

Eutrophication 

Eutrophication of coastal waters is happening worldwide, creating more areas suffering 

hypoxia, and consequently creating more “dead zones” (Diaz & Rosenberg 2008), and 

therefore causing a loss of habitat and spawning areas, elimination of benthic animals and 

alteration of the food chains. In the Baltic Sea, eutrophication is a known actual problem. 

The human activities surrounding the Baltic Sea are numerous because of the high population 

in it. Activities such as agriculture, municipal sewage or industries are common, and 

atmospheric deposition and nitrogen fixation have created an excess in the nitrogen and 

phosphorus in the waters. 

During the last fifty years, the nutrient amount in the Baltic Sea basins has increased 

approximately the double even the triple, and the rates of the biogeochemical processes have 

increased even more (Savchuk et al. 2008). Actually, some reconstructions shown in Savchuk et 

al. (2012) says that in the last half century the Baltic Sea has received approximately 50 million 

tonnes of nitrogen and 2.25 million tonnes of phosphorus from the land and atmosphere. 

In the Gulf of Bothnia the surrounding activities are lower due to its northernmost position, 

and therefore the eutrophication in it is lower than in the rest of the Baltic Sea. However, 

eutrophication is spreading, especially because of inflow of organic material from rivers. 

As a result of the excessive nutrients loads by human activities, and amplified by the factors 

that the Baltic Sea has a slow water renewal and strong stratification, eutrophication is now a 

serious problem. 

Current status 

The increase of eutrophication and with it the increase of the filamentous algae is a known 

actual problem in the Baltic Sea (Raffaelli et al. 1998). In the publication HELCOM (2010) they 

state that with exception of the Bothnian Bay all the open waters of the Baltic Sea are affected 

by eutrophication. The same way, all the coastal areas with the exclusion the Gulf of Bothnia 

are also affected by eutrophication. 

This has modified all the trophic levels in the Baltic Sea ecosystems, changing the structure and 

the species composition of different communities (HELCOM 2002). During the last decades 

algal vegetation has increased (Eriksson et al. 1998), and an increase in the concentration of 

nutrients in the Gulf of Bothnia has been noticed during the last 30 years, doubling its quantity 

(HELCOM 1996, Karjalainen 1999). 

The eutrophication in the Gulf of Bothnia is spreading, following a south-north gradient, which 

is a reflection of how eutrophication in large scale is evolving (Lundberg et al. 2009). 

 

 

 



Objectives and justification 

In management and conservation planning, estimates of species distribution are widely used. 

In the assessment and evaluation of the eutrophication status of the Baltic Sea and also in the 

Gulf of Bothnia, useful tools are indicators. Some well know indicators for aquatic vegetation 

are the distribution of Bladderwrack (Fucus vesiculosus) and distribution of Eelgrass (Zostera 

marina), as well as the proportion of opportunistic species in the vegetation communities 

(HELCOM 2009). Both species mentioned above are considered as macrovegetation, while lot 

of the opportunistic species are considered filamentous algae. 

Therefore, knowing the distribution of these two groups of species can help in the assessment 

and the evaluation of the eutrophication in the Gulf of Bothnia, which is the less eutrophied 

zone of the Baltic Sea. With this objective a useful tool is the species distribution modelling, 

which can give predictions at unsurveyed locations and explain the environmental variables 

effect in that prediction. 

Species distribution modelling 

Species distribution modelling are numerical tools that combine observations of species 

occurrence or abundance with environmental estimates (Elith & Leathwick 2009). Distribution 

modeling is used to predict distributions in a concrete study area, from occurrence or 

abundance data from the same area or being extrapolated from a different area. In the same 

way it is possible to extrapolate the data along the time to create a prediction in the future.  

Nowadays distribution modeling is used for all kind of landscapes (terrestrial or aquatic) for 

describing patterns and making predictions in conservation or management processes. 

Surveying big areas is expensive and time consuming, and modeling can give us predictions of 

unsurveyed areas and show which environmental variables are more for important for each 

species. 

The reliability and robustness of a model falls in the relevant predictors and modelling method, 

consideration of scale, the extent of extrapolation and how they are considered the interplay 

between environmental and geographic factors (Elith & Leathwick 2009). The measure of 

realism of the model is based in these factors. 

One of the weak points of the species distribution modeling is the links between the ecological 

knowledge and the modeling practice, especially when it is referred to the biotic interactions. 

Improving this and reducing models uncertainty are the big challenges in the ecological 

modeling. 

A wide variety of techniques allows modeling to be used in diverse applications. The degrees 

of success is different for different models and techniques, but species distribution models 

have a good performance predicting natural distributions of species, especially when the data 

has been correctly surveyed and the selection of the model and relevant predictors have been 

appropriately selected, showing a good predictive capability. On the other hand, extrapolation 

in time or space could be much more challenging, and using incomplete or inadequate data 

could bring us to wrong results and false predictions (Elith & Leathwick 2009). 



Species distribution modeling combines data from species occurrence or abundance 

(distribution data) with environmental variables based on environmental information as well 

as a spatial factor of study area. The results can shows us the importance of each variable and 

make us understand better the species we are studying, as well as creating a prediction of 

distribution. But for getting the correct results and a reliable prediction, a good model has 

some key steps that we have to follow in the modelling practice.  

First of all the base of the analysis will be to have a relevant and as complete data as we can, 

as accurate as it is possible. We also will have to take into account the correlated predictors 

variables, and select the proper algorithm for our case. Some algorithms could be more 

suitable to some analysis (for example terrestrial landscape or aquatic landscape).  Then we 

have to adequate the model to the training data, and evaluate the model to see if it is reliable 

and realist, and see if the response functions fit with our model. In that evaluation we have 

also to test the predictive performance. Finally we have to map the predictions to a geographic 

space (Elith & Leathwick 2009). 

Relation between modelled species and eutrophication 

The structure and species composition of aquatic bottom vegetation communities are affected 

by eutrophication, favouring filamentous annual species due to increase in the amount of 

nutrients and the diminishing capacity of penetration of the light due to decrease of the water 

transparency, changing the distribution of the species. 

The hypoxia created by the eutrophication also creates a more attractive environment for 

filamentous algae. While larger vegetation has a higher request of oxygen no longer survive, 

they are replaced by smaller and fast-growing species like some species of filamentous algae. 

Consequently, the eutrophication has incremented the growth of annual filamentous algae in 

the whole Baltic Sea and also in the Gulf of Bothnia, in detriment of the macrovegetation 

biomass, depth and geographic distribution (Nielsen et al. 2002). In this sense, it is possible to 

create a relation between the eutrophication and the distribution of different groups of 

vegetation. 

 

MATERIAL AND METHODS 

Study area 

The Gulf of Bothnia is located in the northernmost extension of the Baltic Sea. Surrounded by 

Finland's west coast and Sweden's east coast, the gulf is 80–240 km wide and 725 km long but 

the study area only covers the northernmost 600 km.  The average depth is 60 m and the 

maximum depth is 295 m. In the south it is almost closed off by the Åland Islands. It is 

composed by the Bothnian Sea and Bothnian Bay. 

The coast contains plenty of archipelagos and estuaries and numerous rivers for both coast 

sides. The most common coast type is exposed open shores, vulnerable to the strong wind 

even though there are no powerful tides in the study area.  



The freshwater entering via rivers influences the Gulf of Bothnia decreasing the salinity from 

the north to the south (Håkansson et al. 1996). This influence creates a gradient of salinity 

which in the north can result in a very low salinity, less than 0,5%, while in the south the water 

salinity is similar to the rest in the Baltic sea. The water residence time is ca. 7 years (Algesten 

et al. 2006).  

The Gulf of Bothnia is usually covered by ice in normal winters, having an ice covering time 

duration between 60 and 194 days, from October-November to April-May (Veneranta et al. 

2013) 

Sampling design and method 

The sampling and data collection was realized by the 

Finnish game and Fisheries Research Institute.  

The classification of the vegetation types has been 

done along the coasts of the Gulf of Bothnia in a total 

of 225 sample points, divided into 13 areas. The 

sampling sites were placed with maximum based on 

wind exposure, ice winter length and shoreline length. 

For stratification, these variables were combined to a 

new, eight class layer. The minimum distance between 

sampling sites was set to 1.5 km. The sampling timing 

was set to 1-2 weeks after ice break-up in winter 

independent of latitude. 

The location of each sample was recorded both in a 

manual GPS and in GPS included in the aquascope. 

In each sampling site pictures were taken with a 12 

MP digital camera which was attached to an 

aquascope. At each sampling site 5-13 photos were 

taken with a minimum distance of 1 m.  The legs of 

water scope had white plates to correct the tone of 

light. The depth of each sampling point was 0.3 m, the 

length of the aquascope leg, which represents the shallowest littoral area. Each photograph 

was determined by 16 points and the total number of photos in data is 2427. 

For the interpretation of the photograph, a CPCe software 

(http://www.nova.edu/ocean/cpce/) was used, where it was added the species list of Bothnian 

Sea/Bay and suitable classifications. For the classification of the vegetation 16 points were 

used in each image, marking each point with a figure if the vegetation is present and a cross if 

not. During the interpretation, if there were several different plants in a field, the sampling 

point shows the plant with the greatest surface in the area. An exception applies diatoms, 

which are only indicated if the area is no other vegetation  

Figure 1: Map of Gulf of Bothnia showing 

the sampling points in 2009 and 2010 

(Finnish game and Fisheries Research 

Institute). 

 

http://www.nova.edu/ocean/cpce/


From the classification made in the sampling (species, size, condition and bottom type), the 

species were grouped into diatoms, filaments (filamentous algae) or macrovegetation (eg. 

actual plants) for the statistical analysis as it is shown in the Table 1. 

Table 1: Species grouped into diatoms, filamentous algae or macrovegetation. 

Diatoms Filamentous algae Macrovegetation 

Diatoms are not possible do 
define on species from this 
kind of imagery 

 Cladophora glomerata 

 Ulva intestinalis 

 Furcellaria lumbricalis 

 Pilayella littoralis 

 Ectocarpus siliculosus 

 Dictyosiphon/Stictyosiphon 
sp. 

 Potamogeton sp. 

 Potamogeton pectinatus 

 Zannichellia palustris 

 Phragmites australis 

 Ranunculus circinatus 

 Ceratophyllum sp. 

 Myriophyllum sp. 

 Nitella sp. 

 

Each data entry was based on the vegetation type and the location of the sampling position. 

Also was determined the known environmental variables of the sampling for each sampling 

station (fetch, the amount of shoreline per surface area, distance to the depth of the zone 

surrounding the low surface area, the length of the ice season, nutrients, distance from rivers, 

etc.) 

Due to the wide area covered by the study area, there are potential differences between the 

coastal areas which can be appreciated in the analysis of the data.  

Environmental GIS variables 

Variables measured in the field 

Some of the variables were measured in the field. The ones used in the statistical analysis are 

summarized in the Table 2. 

Table 2: Environmental variables measured in the field used to analyse the probability distribution of the diatioms, 

filaments and macrovegetation (Vanhatalo et al. 2012; Veneranta et al. 2013).  

Variable  Description Unit Value  range 

Shoreprofile Shoreline profile Classification I = open water, II = 
steep, III = gently 
sloping with steep 
edge, IV = gently 
sloping, V = shallow, 
VI = Shallow with 
sand bar 

Bottom Bottom type Classification Soft, silt, sand, 
sand/stone, stones, 
rocks (>30cm D) 

Bottomcov Bottom coverage Classification No coverage, <10%, 
10-25%, 25-50%, 
>50% 

 



GIS variables 

All the variables used for this analysis were the same used in the Veneranta et al. (2013). The 

data proceed from the Finnish Meteorological Institute (FMI), Finnish Environmental Institute 

(FEI), Swedish Environmental Protection Agency (SEPA), HELCOM or Finnish game and Fisheries 

Research Institute (FGFRI). 

All GIS analyses were performed using ArcGIS (ArcMAP 10.1). All the variables were converted 

to 300 m. 

Table 3: Environmental GIS variables used to analyse the probability distribution of the diatoms, filaments and 

macrovegetation (Vanhatalo et al. 2012, Veneranta et al. 2013).  

Variable  Description Unit Value  range 
Shoprofile Shore profile NA 1-6 
depth Depth m 0.1-47 
FE300W Fetch weighted  m 90-260 084 
FE300ME Fetch mean m 9-124 247 
D20M Distance to 20 m 

depth curve 
m 0-27 473 

LINED Shore line density in 
a circle of 3 km 

km/km2 0-323 

ISLANDN Number of islands in 
a circle of 10 km 

I 0-549 

DSAND Area weighted 
distance to sand 

I 0-116 

DSHALLO Area weighted 
distance to shallow 

I 0-6168 

PE900 Water area per 
shoreline length 

I 0-1046 

SALSPR Spring salinity psu 0-6.2 
SALWIN Winter salinity psu 0-6.0 
ICEWIN Length of ice winter 

(2009) 
m 0-24 

ICELAST Last ice cover 
(concentration <30%) 

wk 0-21 

EKOSTAT Ecological status of 
coastal waters 

type 0-4 

PHOSP Dissolved inorganic 
phosphorus 

I 14-49 

NITROG Dissolved inorganic 
nitrogen 

I 10-49 

CHLA Chlorophyll a 
phytoplankton 
concentration 

I 11-45 

SECCHI Secchi depth  I 10-43 
RIVERS Distance to the 

nearest river mouth 
m 0-56 700 

SHAREA Shallow area index 0-1 122 
BOTCLS Bottom class in 

shallow areas 
NA 1 (sand), 2 (sand and 

mud), 3 (sand and 
rocks), 4 (other classes) 



Species distribution model 

The first predictions were modelled using a presence-absence Bernoulli observation model for 

presence absence observations y with an occurrence probability π, following Vanhatalo et al. 

(2012). It is based in the relationship of occurrence probability π to the environmental 

variables x and the spatial parameters s: 

𝑌(𝑥, 𝑠) ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 [𝜋(𝑥, 𝑠)] 

𝜋(𝑥, 𝑠) = 𝑔 [𝑓(𝑥) + 𝜌(𝑠) + 𝛼] 

Where, f(x) is the predictive function dependent of the environmental variables, ρ(s) is the 

spatial component, α is the intercept and g, the link function. Link function g is logistic in case 

of Bernoulli observations. 

The model 

The binomial model states that: 

𝑦𝑖 |𝑍𝑖 
~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑧𝑖, 𝜋(𝑥𝑖, 𝑠𝑖)) 

In a simple binomial model, the objective is to estimate the distribution of the unknown 

population proportion from the results of a sequence of “Bernoulli trials”; which is the data 

𝑦𝑖,1, … , 𝑦𝑖,𝑧 which are either a 0 or 1. The binomial distribution creates a model for the data 

from a sequence of z exchangeable trials from a population were each trial gives rise to two 

possible results, 0 for failure and 1 for success.  

Because of that, data can be summarized in the number of success in trials, which is the result 

variable, y. The parameter z represents the proportion of successes or, in other words, the 

probability of success in each trial (Gelman et al. 2003).  

𝑦𝑖 = ∑ 𝑦𝑖,𝑗

𝑧𝑖

𝑗=1

 

The main difference with the previous model is the addition of discrete and continuous 

covariates. In this case, instead of having an absence-presence model we can measure the 

abundance using the binomial model. 

As different as before, in this time 𝑦𝑖  is the number of count points where species is present in 

site 𝑖, and 𝑧𝑖  is the total number of count points in site 𝑖. This allows us to take into account 

the abundance for the modelling, because it is important to differentiate the occasional 

presence with a numerous abundant presence both to select the variables effect and for the 

prediction created.  

The selection of the variables with the higher effect in the prediction was made according to 

the average predictive comparison test (Vanhatalo et al. 2012) which is summarized in figures 

A, B and C, in which is shown the effect of each variable, and the posterior observation of the 

response curves of each individual variable. 



In the generalized linear model, which our model extends, the importance or the strength of 

each variable is defined by 𝛽𝑥: 

𝜋(𝑥) = 𝑔 [𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ ] 

Once we add the location (spatial correlation), we have to use the Gaussian Process model 

described until now, changing 𝛽1𝑥1 with a non-linear function f(x) and giving prior to it. As we 

mentioned before, in a generalized linear model the strength of each variable is defined by 𝛽𝑥. 

In a non-linear model with interactions between variables, the difference in the strength of the 

effect is based in the values of the variables. The predictive effect of each variable vary due to 

the interaction between variables, because the predictive effect of one variable may depend 

on the value of other variables.  

For this non-linear model, the strength of the effect of a variable in the prediction can be 

calculated with the average predictive comparison (Gelman & Pardoe 2007). The APC values in 

Figures 2 to 4 are analogous to absolute values of beta in the generalized linear model. 

Covariance and hyperparameters 

GP model defines the probability distribution over functions and it is defined by mean and 

covariance function. Different kind of covariance exists, and each one has a number of free 

hyperparameters, whose values also need to be determined.  

The specification of the covariance function determines what type of latent functions f(x) are 

possible, and consequently, the selection of the properties of the latent functions, such as the 

variability or smoothness (Vanhatalo et al. 2012). 

Therefore, choosing a covariance function can be understood as a model selection, and the 

selection of the hyperparameters and its value as the training of a Gaussian process model 

(Rasmussen & Williams 2006). 

The predictive and spatial functions are given a Gaussian process prior with neural network 

and exponential covariance functions, expressed in the next way: 

𝑓(𝑥)~𝐺𝑃 (0, 𝑘𝑓(𝑥, 𝑥′))     →      𝑘𝑓(𝑥, 𝑥′) = 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝜌(𝑠)~𝐺𝑃 (0, 𝑘𝜌(𝑠, 𝑠′))     →      𝑘𝜌(𝑠, 𝑠′) = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑘𝑓(𝑥𝑖, 𝑥𝑗) =  
2

𝜋
𝑠𝑖𝑛−1 (

2𝑥𝑖
𝑇 ∑ 𝑥𝑗𝑛𝑛

(1 + 2𝑥𝑖
𝑇 ∑ 𝑥𝑖𝑛𝑛 )(1 + 2𝑥𝑗

𝑇 ∑ 𝑥𝑗𝑛𝑛 )
) 

𝑘𝜌(𝑠, 𝑠′) = 𝑒
−√∑ (𝑠𝑑𝑠′𝑑)22

𝑑=1 𝑙𝑑⁄
 

𝛼~𝑁(0,10) 

𝑓(𝑥) + 𝜌(𝑠) + 𝛼 ~𝑁(0,10 + 𝑘𝑓 + 𝑘𝜌) 



We use the neural network covariance function for f(x) which is a good choice for it because it 

allows interaction between environmental variables and has good extrapolation power. For 

the spatial random effect we use an exponential covariance function, which is a usual choice 

for modelling spatial random fields (Vanhatalo et al. 2012). 

Spatial autocorrelation is an important concept when our model relates environmental and 

geographic variables.  Values in a spatial random field are spatially correlated. In its most basic 

form this means that adjacent values do not differ as much as values that are further apart. 

Usually, the values are defined over a continuous domain and the spatial random field is 

defined by function valued random variable. In our model the spatial random field is defined 

by the exponential covariance function. 

Different hyperparameters give different explanations of the data, so they are of great 

importance when we are trying to understand the data. To estimate the parameters of the 

covariance function we searched their maximum a posterior estimate with gradient based 

optimization where we approximated the marginal likelihood of the model with expectation 

propagation algorithm (Rasmussen & Williams 2006, Vanhatalo et al. 2012). 

As we mentioned before, the covariance functions usually have some free parameters. In the 

covariance functions the parameters are l, the length-scale parameter and 𝜎2, the signal 

variance parameter, which can be varied, are call hyperparameters in the Bayesian hierarchical 

model (Rasmussen & Williams 2006). The length-scale parameter defines the declination of 

the correlation with the distance and the signal variance parameter shows the variability of the 

spatial field (Vanhatalo et al. 2012). 

Posterior inference 

The EP algorithm was used to approximate the posterior distribution of the covariate 

functions. Basing in the Bayes theorem, we calculate the posterior distribution of f(x) and 𝜌(𝑠), 

and then use both to calculate the probability of occurrence. The model then, concretely the 

predictive function extrapolates the occurrence probability of the sampled places to 

unsampled areas, and the spatial component models the spatial structure when the 

environmental variables cannot.  

Even if the distribution of the group of species is mostly defined by the environmental factors, 

a properly specified model with a correct number of predictors will display minimal spatial 

autocorrelation. The spatial random field is more important than the environmental variables 

when some of the key environmental variables are missing, the predictive model is mis-

specified or the geographic factors are much more influential (Elith & Leathwick 2009). 

All the results were computed using MatLab and the GPstuff toolbox developed by Vanhatalo 

et al. (2012). 

 

 

 



RESULTS 

Selection of variables 

Based on the APC test we can observe the influence of variable in the prediction in the next 

Figures 2 to 4 for each type of vegetation. For the diatoms the most influential variable is the 

bottom type, the percentage of covered bottom, the distances to the sand and the distance to 

shallow water as well as the number of island surrounding the sampling area.  

In the other side, the most influential variables for the filamentous algae are the bottom type 

once again and the fetch weighted. The percentage of bottom covered, the number of 

surrounding islands and the water area per shoreline length have also a relevant effect in the 

prediction. Finally the depth and the distance to the 20 metres curve affect also the prediction. 

 

 

 

The prediction for the macrovegetation is extensively affected by the type of bottom, the 

distance to the 20 metres curve, the fetch weighted, the distance to the sand and bottom 

classification. The percentage of covered bottom has less effect than the others, but still 

affects the prediction. 

 

 

 

 

0 0.5 1 1.5 2

SHOPROFILE
DEPTH

BOTTOM
BOTTOMCOV
FETCH300W

FE300ME
DIST20M

LINED
ISLANDNUM

DIS_SAND
DIS_SHALLO

PE900
PE3000

SAL09SPRS
SAL910WIN
ICELAST09
ICEWIN09
EUTSTAT
EKOSTAT

PHOSP
NITROG
CHL_A

SECCHI
RIVERS

BOTTOMCLS
SHAREA
N_etrs89
E_etrs89

0 0.5 1 1.5 2 2.5

SHOPROFILE
DEPTH

BOTTOM
BOTTOMCOV
FETCH300W

FE300ME
DIST20M

LINED
ISLANDNUM

DIS_SAND
DIS_SHALLO

PE900
PE3000

SAL09SPRS
SAL910WIN
ICELAST09
ICEWIN09
EUTSTAT
EKOSTAT

PHOSP
NITROG
CHL_A

SECCHI
RIVERS

BOTTOMCLS
SHAREA
N_etrs89
E_etrs89

Figure 2: Strength of the effect of the variables in the 

predictive distribution for the diatoms. 

 

Figure 3: Strength of the effect of the variables in the 

predictive distribution for the filaments. 

 



 

 

 

 

 

 

 

 

 

Response curves 

In the appendix I there are the response curves of all the variables, but in the following figures 

we have summarize the response curves of the most important variables. We can observe a 

strong relationship between the bottom type and the presence of diatoms, as well as with the 

distance to shallow waters. With stone/rock bottom the probability decreases, and also when 

the distance to shallow water increases. On the other hand, the probability slightly increases 

when the percentage of covered bottom increases, and the same happens when number of 

surrounding island increases and the distance to the 20 metres curve gets stronger. 

 

Figure 5: Response curves of binomial modelling of the DIATOM using only the covariates which showed a high 

influence in the prediction in the binomial modelling with all the covariates. 

For the filamentous algae, the bottom type has a strong effect to the prediction. When bottom 

is more similar to a stone/rock bottom type, the probability of presence gets much higher. The 

increase in the fetch weighted also increases the probability even in a not so strong way. The 

percentage of covered bottom and the number of surrounding islands increase slightly the 

probability when they are higher, and the water area per shoreline length remains neutral 
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Figure 4: Strength of the 

effect of the variables in the 

predictive distribution for the 

macrovegetation. 

 



but shows a high variability, affecting the prediction in a different ways. The distance 

to sand decreases the probability also in very soft way. 

Figure 6: Response curves of binomial modelling of FILAMENT using only the covariates which showed a high 

influence in the prediction in the binomial modelling with all the covariates. 

The macrovegetation is clearly affected by the bottom type, the fetch weighted, the distance 

to the 20 meter curve and the distance to the sand. In the first two variables, the probability 

decreases in stone/rock bottoms, and also when the weighted fetch is higher.  In the case of 

the distance to sand and the distance to the 20 meter curve is in the just the contrary. When 

the distance is higher the probability is increased. The same happens with percentage of 

covered bottom, but the strength of this variable in the prediction is clearly much lower. The 

bottom class in shallow waters also affects the prediction slightly. 

 

 

Predicted distribution of the species 

The prediction probability of the three groups of species in the Gulf of Bothnia is shown in the 

following maps, in a scale from 0 to 1 with the same scale of colours. It ‘s obvious that the 

most extended group of bottom vegetation is the group of filamentous algae, which has a 

probability higher than 0.8 in almost the whole gulf. For the prediction of the diatoms, on the 

other hand, exists a high variability in function of the area. Evidently the macrovegetation has 

Figure 7: Response curves of binomial modelling of MACROVEG using only the covariates which showed a 

high influence in the prediction in the binomial modelling with all the covariates.  

 



Figure 9: Distribution of the Filament with prediction 

probability, using only the variables which showed a 

high influence in the prediction in the binomial 

modelling with all the covariates. 

 

 

the lower probability in the whole gulf, having a high probability only the east coast of the 

Bothnian Sea, especially in the north part and close to the sea shore. 

We can observe a big difference between different areas. The diatoms have a medium-high 

probability in the east coast of the Bothnian Sea, while in the west coast the prediction is 

generally low. In the Bothnian Bay, the probability of the diatoms is around 0.5. The prediction 

of the filamentous algae does not vary so much, there are only three observable areas where 

the probability descends from high to medium: in both sides in the north of the Bothnian Sea 

and in the north of the Bothnian Bay. 

  

 

 

 

 

The prediction of macrovegetation in the figure 12 also has a strong difference between the 

different areas. The probability is generally low, but we can observe some medium even high 

probabilities in the east coast of the Bothnian Sea.  

We have noticed also a relation between the distance to the sea shore and the prediction 

probability.  

Figure 8: Distribution of the Diatom with prediction 

probability, using only the variables which showed a 

high influence in the prediction in the binomial 

modelling with all the covariates. 

 



The macrovegetation increases its probability in areas close to the sea shore. Not only for the 

macrovegetation, we can observe that the probability for the diatoms also increases in areas 

closer to the coast, while the filamentous algae increases its probability in areas further to the 

coast. 

The results additionally show an inverse relation between the filamentous algae and the 

macrovegetation, in which clearly we can see that the only areas with high probability for the 

macrovegetation coincide with the areas in where the filamentous algae reduce its probability. 

 

 

 

 

DISCUSSION 

Table 4 summarizes the most influential variables in the prediction for each group of species. 

The bottom type is the most influential one for the three of them, and the percentage of 

covered bottom is also present in the three groups. As we can see, macrovegetation and 

filamentous algae share four variables, but if we look in the curve responses we can see that 

three of the four variables response are opposite for macrovegetation and filamentous algae. 

The only variable with a similar response is the percentage of covered bottom, which is the 

one with less effect on the prediction and the slope is almost zero. 

 

Figure 10: Distribution of the Macroveg 

with prediction probability, using only 

the variables which showed a high 

influence in the prediction in the 

binomial modelling with all the 

covariates. 

 



Table 4: Summarizing table of the most influential variables for each group of 

species using a binomial model. 

VARIABLES DIATOM FILAMENT MACROVEGETATION 

BOTTOM X X X 
BOTTOMCOV X X X 
BOTTOMCLS   X 
CHL    
DEPTH    
DISAND  X X 
DIST20M X  X 
DSHALLO X   
FE300ME    
FETCH300W  X X 
ICELAST09    
ISLANDIUM X X  
PE3000    
PE900  X  
SAL910WIN    
SECCHI    
SHAREA    

 

In the diatoms, the variable with the higher effect is the bottom type, and the response curve 

indicates a preference for soft and sandy bottoms. However, other publications (Snoeijs 1994, 

Busse & Snoeijs 2006) show that diatoms prefer hard bottoms of rock or stones. This 

difference in the response of the variable maybe causes by a mistake in the interpretation of 

bottom type and diatom appearance in the original classification. 

The distance to shallow water is the second variable with higher effect in the prediction. The 

response shows a strong decrease in the probability when the distance to the shallow water 

gets higher.  The type of shore profile preferred by the diatoms is the type five (shallow 

waters), and the response of both variables are according to the generated distribution map of 

the diatoms, where we can see the higher probability in the places closest to the shore, in 

shallow waters were the large numbers of living diatoms overwinter beneath the ice on 

benthic substrates (Kingston et al. 1983). 

The distance to 20 m curve describes actually the surface area of relatively shallow coast. The 

higher distance, the more we have shallow, productive area. In similar way, the higher the 

island count per area is, the more shallow the area might be. The shallow and structurally 

complex area warms up early - thus being an productive area in early spring. The dense and 

shallow archipelago areas work also as a kind of filters, thus enhancing the productivity. 

The filamentous algae shows a logic response according to the biological knowledge. This 

group shows a preference for rock and stone bottoms according the bottom type variable. The 

increase in the weighted fetch variable also shows an increase in the probability, which is in 

concordance with the bottom type variable, because both variables are related with the 

exposition of areas to the wind or waves. Taking into account the responses of the two 

variables we can say that filamentous algae shows a preference for exposed areas. This is 



explained because hard bottoms are usually in very exposed areas, like older parts of the 

archipelagos, and therefore explains the increase of probability for filamentous algae in wind 

exposed areas. This was confirmed by a study made by Einav et al. (1996) which showed that 

more exposed areas in islands had a larger stock and species richness of algae than areas with 

less exposure. 

Related to the previous point, the higher the number of islands is, the higher the probability 

becomes for filamentous algae (Bonsdorff et al. 1997). As the analysis has been made in a large 

scale, we cannot focus in the regional scale to compare the number of local islands with the 

prediction. However, the southern part of the study area has more islands than the northern 

part. This means that the Bothnian Bay is mostly composed by open areas with not so many 

islands, so in the Bothnian Sea there are more islands, which increases the prediction in this 

area the for filamentous algae.  

The other variables affecting the prediction probability for the filamentous algae like distance 

to sand and perimeter don’t have a clear significance. In general, we can observe a high 

probability of the filamentous algae in the whole study area, with the exception of none 

exposed areas like small gulfs or protected bays. 

As we have mentioned before, the prediction for the filamentous algae is opposite to 

prediction of the macrovegetation. This is something that we can observe in the maps very 

clearly. As the scale is coarse and the resolution is not enough, actually we have a higher 

prediction of the macrovegetation in the inner parts of the archipelago areas or small bays, 

areas with low exposition and well protected from the wind and the waves, unlike with the 

filamentous algae. 

The bottom type preferred by the macrovegetation is soft or sandy bottoms, as well as places 

where the weighted fetch is low. Once again both variables are in concordance, because both 

variables are related with the exposition of areas to the wind or waves. Contrary to what I 

mentioned earlier, in this case we observe that soft or sandy bottoms are in non-exposed 

areas, zones were the probability for macrovegetation will be higher. Usually macrovegetation 

is mostly in eutrophic areas were we have lot of nutrients and were the production is high like 

in the littoral areas. 

For macrovegetation, the higher the distance from sand is the higher the influence on 

prediction is. This is probably caused by the properties of the Gulf of Bothnia. In Bothnian Bay 

and Swedish coast of Bothnian Sea, the relative area of sandy shores is high. These are also 

exposed coasts, and thus there are no suitable places for macrovegetation to grow, as in 

archipelago or sheltered estuary areas. 

The dominance of filamentous algae is a sign of eutrophication in exposed areas, where the 

water is rich in nutrients and the production is high. The increase of eutrophication and with it 

the increase of the filamentous algae is a known actual problem in the Baltic Sea (Raffaelli et 

al. 1998). Big changes have been originated along all trophic levels in the Baltic Sea ecosystems 

by the eutrophication during the last years (HELCOM 2002), and the annual algal vegetation 

had increased during the last decades (Eriksson et al. 1998). The same way, during the last 30 



years, a small increase in the concentration of nutrients in the Gulf of Bothnia has taken place 

(HELCOM 1996, Karjalainen 1999). 

Eutrophication of the Baltic Sea has increased both the growth of annual filamentous algae 

and the rate of sedimentation. Together these factors may have a detrimental effect on the 

macrovegetation populations, because as we have seen, they share various variables which 

affect the distribution of both groups, but with an inverted response curve.  

The environmental main reasons for this are that the increased competition from annual, fast-

growing filamentous algae, which gets advantage from the increase of nutrients and the 

reduced light conditions caused by eutrophication and the decrease of oxygen caused by the 

hypoxia.  

The oxygen deficit leads to changes in benthic communities; were larger vegetation, with 

higher request of oxygen no longer survive, and they are replaced by smaller and fast-growing 

species that live on the sediment surface and can tolerate low concentrations of oxygen. Even 

if the oxygen deficit is not so high in the Gulf of Bothnia, the filamentous algae are favoured 

because they can survive while macrovegetation has problems to get enough oxygen. 

With this increase in filamentous algae, the consequences a lead to light deprivation for 

aquatic macrovegetation, reducing their biomass, depth and geographic distribution. This 

means that the loss of species like eelgrass and bladder wrack which provide substrate for 

feed, reproduction, and shelter for associated fauna, will influence and change the coastal 

Baltic ecosystem, and thereby coastal fish catches. More precisely, Borg et al. (1997) 

emphasised that eutrophication-induced changes in habitat structure, such as an increased 

dominance by filamentous algae, could alter the availability of predation, refuges and foraging 

habitats for other species. 

Regarding the Baltic fish communities, eutrophication is one of the major factors affecting the 

composition and development of the communities and causing changes in fish community 

structure and function (Lappalainen 2002). Depending of the fish species the eutrophic areas 

may favour the abundance of some fish species, for example these areas are important for the 

reproduction of coastal fish species like pike, roach or berch. However, other species prefer 

more oligotrophic waters. This is the case of several species which depend on seagrass or 

higher algae, which may disappear owing to the effects of eutrophication (HELCOM 2006). 

Sedimentation also affects the reproduction of some fish species, as coregonids. Exposition 

affects sedimentation, and in eutrophic and exposed areas the high sedimentation can affect 

the spawning and incubation time of the eggs. 

The eutrophication in the Baltic Sea follows a south-north gradient, which is a reflection of 

how eutrophication in large scale is evolving.  Therefore, as Lundberg et al. says about the 

spreading of eutrophication in the Gulf of Bothnia, the changes in the environmental 

conditions follow a southward gradual change, which is partly caused by the inflow of organic 

material from rivers. Also, there is a difference between the inner archipelago areas have been 

more affected by eutrophication than outer archipelago and exposed areas, which have 

reminded more stable over the time (Lundberg et al. 2009). 



The same way, we can observe a higher eutrophication in the east coast of the Gulf of Bothnia 

than in the west coast. This is explained because due to the shallower water and higher 

nutrient load the east coast is more predisposed to eutrophication (HELCOM 2009, Andersen 

et al. 2011). 

We can observe the three spatial ways of spreading in the filamentous prediction probability 

map. In the south and east the probability is usually higher, with the exception of areas which 

are less exposed (inner archipelago areas). However, the ecological status of coastal waters 

and eutrophication does not strictly follow the same gradient, because there are more factors 

taken into account in when calculating the ecological status (Venaranata et al. 2013). 

 

CONCLUSIONS 

Compared to the rest of the Finnish coastal waters and the Baltic Sea, the Gulf of Bothnia is in 

good environmental condition (Lundberg et al. 2009).  It has been shown that the main group 

of species in the Gulf of Bothnia is the filamentous algae, with and elevated predicted 

probability in almost all the Gulf of Bothnia. This group of species follow the eutrophication 

spreading direction, responding logically to the biological knowledge as expected. Preferring 

hard bottoms like rock or stones and exposed areas, the number of filamentous algae is 

increasing every year, reducing macrovegetation populations into more protected areas. 

The predicted distribution for the macrovegetation is therefore opposite to the filamentous 

algae. In three groups of species the most important variable is the bottom type. But in the 

case of filamentous algae and macrovegetation, the rest are more related to exposition, having 

a contrary response for each group of species. As a result we can observe a generally low 

probability in the whole area for the macrovegetation, and having just high probability in few 

localized areas were the filamentous algae is not dominant like inner parts of the archipelagos 

or small bays, areas with low exposition and well protected from the wind and the waves. 

Another important factor in the predicted probability is a spatial dependence of the factors. As 

we have mention before there is south-north gradient in the spread of filamentous algae, but 

in the same way there is an east-south gradient, were the east coast has higher probability for 

filamentous algae, and consequently eutrophication. These gradients are caused by the higher 

number of islands in the south, the shallower waters in the east and the higher nutrients load 

and inflow of nutrients from the rivers in the more eutrophied areas. 

Undoubtedly there is a relation between evolution of eutrophication and the increase of 

filamentous algae. The increased competition from filamentous algae, which gets advantage 

from the increase of nutrients and the reduced light conditions and the decrease of oxygen 

caused by the hypoxia as an effect of eutrophication, produce a change in the vegetation 

communities were smaller and fast-growing species of filamentous algae which can tolerate 

low concentrations of oxygen replaces other macrovegetation like Eelgrass or Bladder wrack. 

These eutrophication-induced changes in the vegetation communities have consequences in 

the habitat structure, affecting for example the availability of predation, refuges and foraging 

habitats for other species. The same way, big changes are produced in the composition and 



development of the communities and causing changes in fish community structure and 

function. Therefore, we can say that eutrophication has modified all the trophic levels in the 

Baltic Sea and Gulf of Bothnia ecosystems, changing the structure and the species composition 

of different communities 

Changes in vegetation can occur very fast and not as a gradual change (Dahlgren & Kautsky, 

2004), so it should be particularly important to focus in the regions with less eutrophication 

and establish a follow up process to detect potential changes in key zones of the Gulf of 

Bothnia. As the scale is coarse and the resolution is not enough, more precise studies have to 

focus in these shallow coastal waters to start managing the eutrophication process in the Gulf 

of Bothnia. 
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