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chlorophyll, leaves treated with melatonin exhibited delayed senescence. The effect of melatonin was 

concentration dependent (most effective concentration was 1 mM). The mechanisms by which 

melatonin deferred senescent changes in barley leaves was not determined but may have been a 

consequence of its free radical scavenging activities or secondary to an inhibition of senescence 

associated genes [153]. 

 

Figure 7. Abiotic stresses negatively impact plant physiology. These stressors induce a 

cascade of events (left portion of figure) which leads to the elevated production of toxic 

reactive oxygen species (ROS) and aging. Concurrently, the stresses upregulate antioxidant 

enzyme synthesis and endogenous melatonin production both of which provide protection 

against ROS. Additionally, the application of exogenous melatonin also provides 

protection against ROS and aging. Melatonin receptors (hyphenated box) are included in 

the cell membrane; however, these receptors have not heretofore been documented. 

CLH1/PAO = chlorophyll degradation-related genes; NAX1/AKT1 ion channel-related 

genes; SAGs = senescence associated genes. 

In a series of thorough studies, Wang and associates [154–156] clarified melatonin’s role in 

forestalling leaf senescence. When detached apple leaves were kept in the dark to provoke more rapid 

aging, those treated with 10 mM melatonin lost their chlorophyll slower (Figure 8) and maintained 

maximal potential Photosystem II efficiency [154]. Moreover, melatonin inhibited gene expression for 

the key enzyme that degrades chlorophyll (pheide a oxygenase) and also inhibited senescence 

associated gene 12, both of which contributed to delayed aging in melatonin-treated leaves. The 

culprits that caused the observed changes were surmised to be toxic oxygen derivatives since 

melatonin also suppressed H2O2 accumulation in the leaves; thus, the ability of melatonin to determine 

the senescence rate is a consequence of its antioxidant activity. 
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Figure 8. Detached apple leaves treated with (A) water only (H2O) or with (B) water 

containing melatonin (10 mM melatonin) and kept in the dark for 12 days. Melatonin 

delayed senescent changes in the leaves as illustrated by the preserved chlorophyll levels. 

From Wang et al. [154] with permission.  

An in vivo study in which apple plants were grown in soil supplemented regularly with melatonin 

also activated changes consistent with delayed aging [155]. The authors compared a gamut of 

metabolic endpoints in the leaves of control and melatonin-treated plants. It was shown that melatonin 

delayed protein degradation, maintained significantly higher Photosystem II activity as measured by  

preserved chlorophyll levels as well as three photosynthetic end products (sorbitol, sucrose and starch). 

Melatonin-treated leaves also had improved nitrogen, total soluble protein and Rubisco protein 

concentrations. This study clearly reveals the large number of positive metabolic actions melatonin has 

in plants, all of which could contribute to its ability to delay senescence. 

Wang et al. [156] added an extra level of refinement to their studies related to the role of melatonin 

in apple leaf aging by performing a proteomic analysis of leaves undergoing natural aging versus those 

aging more slowly due to melatonin treatment. A GO analysis of Blast2GO showed that of the 

hundreds of proteins altered by melatonin, they were primarily located in the plastids. In general, 

melatonin downregulated proteins that are typically upregulated during the senescence process. This is 

certainly the most thorough study related to the action of melatonin on protein metabolism in any plant 

and the results contribute information on the mechanisms by which melatonin delays aging in plants. 

A detailed analysis of some of the genes involved and the measurement of melatonin levels 

associated with the development of Arabidopsis was recently published [157]. Additionally, these 

workers defined the role that exogenously-applied melatonin has on rosette leaf senescence. During 

plant development, and particularly in the latter stages (40–60 day old plants), endogenous melatonin 

levels increase rapidly from 0.5 ng/g FW at day 30 to 2.0 ng/g FW by day 60. When 60-day-old 

Arabidopsis plants were treated with additional exogenous melatonin, leaf senescence was delayed as 

indicated by the preserved chlorophyll levels. Also, when plants were supplemented with melatonin, 

the expression level of AUXIN RESISTANT 3 (AXR3) INDOLE-3-ACETIC ACID INDUCIBLE 17 

(IAA17) was significantly downregulated. The downregulation of IAA17 by melatonin may have 
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caused a drop in the expression of SENESCENCE 4 and SENESCENCE-ASSOCIATED GENE 12. The 

results show that the gene, IAA17, which impacts aging of Arabidopsis, may be part of the signaling 

pathway by which melatonin modulates plant aging [156]. 

8. Melatonin Improves Plant Growth 

As in animals [25], melatonin has a veritable cornucopia of functions in plants [158,159]. Some of 

these actions are similar to those in animals, e.g., its redox functions, while others seem to be 

substantially different, e.g., growth promotion [64,65,72,157,158]. 

Indole compounds derived from tryptophan are common in plants. Included in this group is  

indolyl-3-acetic acid (IAA), a widespread auxin in plants which, among other functions, is a growth 

promoter [160,161]. IAA and melatonin, also a tryptophan derivative, have a markedly similar 

molecular structure and, since molecules with a like structure often have similar functions, melatonin 

was suspected of having auxin-like activity in plants. Both melatonin and IAA have an indole ring, but 

they vary in terms of the number of attached substituents (Figure 9). Melatonin has an acetyl group on 

position 3 and a methoxy group on position 5 on the indole ring while IAA has a single substituent 

acid group on position 3. 

 

Figure 9. As illustrated here, tryptophan is the common precursor for the auxin indolyl-3-

acetic acid (IAA) and melatonin in plants. Melatonin is reported to have auxin-like activities. 

While melatonin enhances various parameters of growth in plants, in most cases the mechanisms 

are incompletely defined [158,162,163]. In this regard, melatonin has been shown to have auxin-like 

activities. As an example, in the etiolated lupin (Lupinus albus) hypocotyls melatonin at micromolar 

concentrations was reported to have positive growth-enhancing actions; this stimulatory effect of 

melatonin on growth was roughly two-thirds that of IAA [164]. Shortly after their first investigation 
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related to melatonin’s promotion of growth in the lupin hypocotyl, this group performed a similar 

study using four monocot species; these included wheat (Triticum aestirium L.), oat (Avena sativa L.), 

barley (Hordeum vulgare) and canary grass (Phalaris canariensis L.) [165]. The actions of melatonin 

on growth of both the coleoptiles and roots were again compared with those of IAA. Both the 

coleoptiles and roots of the four monocots were assessed in terms of their longitudinal growth. The 

molecules were tested over a range of concentrations from 0.01 to 100 µM. While melatonin generally 

spurred longitudinal growth of the coleoptiles, the stimulatory actions were again less than that caused 

by IAA; also, melatonin’s most marked promotional effects were dose-dependent and rather specific 

for each plant. Also, as in their earlier report [164], the authors noted that at the highest concentration, 

melatonin seemingly became toxic to the plants since coleoptile growth was inhibited. The four 

etiolated monocot coleoptiles also took up melatonin, as measured by HPLC with electrochemical 

detection, with different efficiencies. The highest concentrations measured were in wheat and lowest 

levels were in canary grass. The measured melatonin values were poorly correlated with the growth 

promoting effects of the indole. Soon after the initial demonstration of the impact of melatonin on 

plant growth, several publications using a variety of parameters have addressed the issue of 

melatonin’s effects on plant growth [72,82,166–168]. Relative to the above-ground plant organs, the 

main conclusion of these studies has been that melatonin is generally beneficial to and advances their 

growth [162,163]. In many cases the actions of melatonin resemble those induced by the auxin, IAA.  

The impact of endogenous melatonin levels on leaf growth and structure was convincingly 

demonstrated in a study where the concentrations of the indoleamine were lowered by generating 

transgenic tomato plants overexpressing rice (Oryza sativa L.) indoleamine dioxygenase; this enzyme 

metabolizes melatonin thereby keeping its levels low [169]. Characteristically, a leaf of a control  

wild-type tomato plant develops a terminal leaflet and two pairs of lateral leaflets in a basipetal 

sequence. In the plants having depressed levels of melatonin, which were measured, the leaves often 

had markedly different structures. In the T1 transgenic plants the number of lateral leaves was often 

reduced; additionally, these leaflets were malformed, being flatter than the control leaflets and their 

margins were less serrated. In a few cases transgenic plants developed odd-pinnately compound leaves 

with five or more leaflets. 

Considering their results, Okazaki and co-workers [169] pointed out that IDO cleaves the indole 

ring of indoleamines and, therefore, the concentration of other molecules that possess a similar 

structure may also have been changed in the transgenic tomato plants; these perturbations may also 

have contributed to the abnormal leaf development. In particular, downregulation of the indoleamine, 

IAA, also converts compound leaves into simple leaves. The phenotypic leaf changes induced by 

downregulating melatonin were obviously similar to those caused by manipulation of the auxin. 

Hence, the precise mechanism by which the reduction in melatonin perturbed leaf development in the 

tomato requires additional inquiry. 

Okazaki et al. [108] also upregulated melatonin levels in transgenic MicroTom tomato plant leaves 

by overexpressing the enzyme AANAT, the activity of which is typically correlated with melatonin 

concentrations. The leaves of some of these plants had highly increased melatonin concentrations (up 

to 7-fold greater than in leaves from wild type plants). Even though the leaves exhibited extremely 

high melatonin levels, the authors specifically mentioned no significant phenotypic changes were noted 

in the leaf structure. This is consistent with observations reported earlier by Murch and Saxena [170]. In 
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this latter study, a germ plasm line of St John’s Wort (Hypericum perforatum L.) in which elevated 

melatonin levels were produced in vitro using mutagenized tissues exhibited structures that were 

morphologically similar to the wild type. Based on the outcome of the studies by Okazaki et al. [108] 

and Murch and Saxena [170], elevated melatonin levels in plants appear to be rather innocuous while 

depressing the levels of this indoleamine may have negative consequences on plant development. 

While abnormal leaf structure is representative of morphogenetic perturbations caused by depressed 

melatonin levels, the functional state of these so-called deformed leaves is of great significance. At this 

point there are no studies of the physiology of leaves suffering with lower than normal melatonin 

concentrations. Conversely, with elevated levels of melatonin in plants maintain their content of  

β-carotenoids and increase endogenous levels of vitamin E and C and reduced glutathione [169,170]. 

Moreover, etiolated rice seedlings ectopically overexpressing AANAT, which augments their 

melatonin concentrations, also had chlorophyll levels well above those in the wild-type  

counterparts [171]. Considering the essential function of chlorophyll in capturing energy from photons 

and its role in the synthesis of critical carbohydrates, this pigment is obviously essential for health of 

photosynthesizing plants. 

Not only is the content of chlorophyll preserved by melatonin, but its photosynthetic efficiency is 

likewise maintained or even enhanced. When melatonin was sprayed onto cucumber seedlings, net 

photosynthesis was elevated [172]. This occurred in plants maintained under room temperature 

conditions as well as those exposed to high ambient temperatures [173]. The judgment regarding the 

photosynthesis rate was based on the higher levels of leaf CO2, which made it available for the 

formation of additional carbohydrate. 

Based on these limited data it seems safe to surmise that depressed melatonin levels in plants may 

compromise their physiology. Conversely, all indications are that higher than normal melatonin 

concentrations in plant organs seem to aid them in terms of thriving and surviving [174]. 

A well-developed root system is obviously critical for vegetative growth and seed and fruit 

development. An adequate root system ensures efficient water and nutrient uptake and provides a solid 

anchor for the plant to prevent damage resulting from movement of the above-ground tissues. The 

lateral roots are of special importance since they are a highly dynamic and physiologically active 

component of the root system. Also of importance is that root architecture is plastic and exhibits 

marked changes depending on the nutrient content of the soil, soil matrix heterogeneity and biotic 

interactions [175]. Lateral root growth is a highly complex process and is regulated to a large degree 

by auxin [176,177]. 

Recently, reports have surfaced which reveal that melatonin also exercises some control over root 

architecture as observed in St. John’s Wort, wild leaf mustard, sweet cherry root stocks and  

lupin [178–181]. In each of these studies the ability of melatonin to enhance lateral root growth 

duplicated the actions of IAA. Another feature that became apparent in two of these reports [179,180] 

is that at least for lateral root elongation the response to melatonin may be concentration specific. 

Thus, lower levels of melatonin were more effective inducers of root branching than were the higher 

doses that were tested; indeed, at the upper extreme of concentrations of melatonin (10–100 µM) used, 

the indole may stymie lateral root growth. 

While the actions of melatonin on rooting have been described as being auxin-like, the data 

obtained by Pelagio-Flores et al. [182] indicate that this function is independent of IAA. This was 
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documented using auxin-responsive marker constructs in the seedlings of Arabidopsis thaliana. The 

outcome of these studies was that melatonin did not activate the expression of auxin-inducible genes 

which drive morphogenetic root growth. In contrast to other reports [179,180], these workers also did 

not find that high concentrations of melatonin (up to 600 µM) interfered with root branching in 

Arabidopsis, a species not used in the other two publications. 

A serious attempt to define the genes regulated by melatonin which determine lateral root growth 

was carried out by Zhang and colleagues [183]. The seeds of the cucurbitaceous plant, the cucumber, 

were used given that the genomic sequence of this species is known. The authors used RNA 

sequencing to explore the potential mechanisms of induction of lateral root growth that was observed 

in other reports [178–181]. The seeds were primed in a solution containing either 10 µM or 500 µM 

melatonin and germinated in a 100 mM NaCl solution for 48 h. In seeds primed with a 500 µM 

melatonin solution, 121 genes were significantly upregulated in the seedlings while 196 genes were 

downregulated. On the basis of their expression parameters, the peroxidase-related genes where those 

likely related to melatonin’s stimulatory action on lateral root growth. However, genes related to cell 

wall formation, carbohydrate metabolism, oxidation/reduction processes and catalytic activity also 

exhibited changes in gene expression patterns; these multiple, diverse changes precluded the 

identification of a definitive process(es) by which melatonin mediates its effect on lateral root 

elongation. Some roots were also Feulgen stained [184] to identify lateral root primordia. This showed 

that melatonin clearly augmented the numbers of primordial root sites supporting its stimulatory action 

on lateral root growth [183] (Figure 10). 

Transgenic rice plants (Oryza sativa cv. Dongjin) rich in melatonin due to over expression of sheep 

SNAT exhibited greater biomass but delayed flowering and crop yield [184,185]. This indicates that 

high constitutively-expressed melatonin levels may yield different results in terms of product yield 

than when plants are germinated from seeds that are primed with a melatonin solution [186]. As will 

be summarized below, priming of seeds in a solution of melatonin has been shown to enhance 

germination, improve plant height and biomass and augment crop yield. 

 

Figure 10. Feulgen stained cucumber roots reveal lateral root primordia (dark points). 

Melatonin at concentrations of either 10 µM (M10) or 500 µM (M500) stimulated  

lateral root primordia over the number seen in control roots (CK). From Zhang et al. [183] 

with permission.  
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9. Melatonin Improves Crop Yield and Provides Crop Protection 

The most thorough and potentially important investigation related to the ability of melatonin to 

impact crop yield is that of Wei and co-workers [187] who used the soybean as the model plant. 

Soybean is one of the most valuable agricultural crops in the world; it is widely used for seed oil 

production, as feed for livestock, for biofuel feedstock and as an important source of protein in the 

human diet [188]. The tremendous value of this crop is emphasized by the fact that the world 

production has increased steadily since 1961 and is forecast to reach 372 million tons by the year 2030. 

To achieve this goal, the soybean yield from available cultivated land must be increased substantially 

since land used for this purpose is predicted to remain stable or may actually decrease. Because of this, 

there is an urgent and critical need to identify means to augment soybean production on the current 

field allotment [189]. Obviously, any means that would contribute to achieving this goal of enlarging 

soybean production, or of any agriproduct (see below), would be of major economic importance. 

As one aspect of a study designed to examine the action of melatonin on growth and abiotic stress 

tolerance of soybean plants grown from melatonin-treated seeds, Wei et al. [187] also measured the 

yield of soybeans. For the experiment, soybeans (Glycine max SuiNong 28 SN28) were initially coated 

with 500 µL/100 seed reagent that contained no melatonin or melatonin at concentrations of either 50 µM 

or 100 µM. After coating, the seeds were dried at room temperature and then sowed in pre-watered 

soil. After germination, the seedlings were grown in a sunlit greenhouse located at 40°22'N and 

116°22'E (Beijing, China). The agronomic traits that were recorded included the number of soybean 

pods per plant, the number of seeds per pod and 100-seed weight. 

The melatonin concentrations selected for this study were based on observations of  

Hernandez-Ruiz et al. [164] which suggested that 200 µM concentrations of melatonin improved the 

growth of lupin plants. Wei et al. [187] found that the 50 µM and 500 µM melatonin exposure 

improved seed germination and the plants developed larger leaves; this was statistically verified when 

the trifoliate leaves of 5-week-old melatonin-treated plants were compared with those from control 

plants. At 3 months after germination, the agroeconomic measures documented that the soybean plants 

grown from melatonin-coated seeds had more pods per plant and more seeds per pod. The 100-seed 

weight did not differ between the melatonin-treated and control plants. All other parameters examined 

in this study also indicated that melatonin-treated plants are hardier than their control counterparts. 

A similar stimulatory effect of melatonin on corn and cucumber production was noted by Posmyk 

and colleagues [140,159,174]. In these studies, rather than coating the seeds with melatonin as 

described by Wei et al. [187], the authors primed the seeds overnight in a melatonin solution. The 

priming caused a marked increase in the melatonin levels in the seeds and, when they were germinated 

and grown to maturity, the resulting plants bore more product, i.e., corn and cucumber, than did the 

plants grown from seeds primed only in water. 

It is critically important that studies such as those of Wei et al. [187] and Posmyk and  

colleagues [140,159] be expanded. If improved crop yield is verified in large scale field trials, 

melatonin could prove to be, at least in part, a solution to the problem of producing more product 

without increased land usage. Melatonin is easy to synthesize in pure form and it is inexpensive, so its 

use could prove to be a practical application of this indoleamine. 
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The results summarized above could also be of special interest for another reason. The reports show 

that the application of exogenous melatonin to seeds, either by coating or priming, had an impact on 

plant growth and crop production throughout the life cycle of the plant [140,159,174,187]. Since it 

would seemingly not be difficult on a large scale basis to pre-treat seeds with melatonin prior to 

sowing as described, the application of melatonin to improve agricultural production would likely be 

doable. It would also be of interest to determine whether plants germinated and grown from  

melatonin-treated seeds are more stress tolerant or whether the nutrient composition of the crop  

was changed. 

Considering the described importance of exogenously-applied melatonin to enriching crop yield, the 

consequences of upregulating endogenous melatonin synthesis in plants should be assessed in terms of 

crop production. Within the last several years remarkable advances have been made and new 

information has been uncovered related to the pathway of melatonin biosynthesis in plants [190–193]. 

While this route differs slightly from that in animals [150,194,195] (Figure 11), nevertheless, 

tryptophan is the common precursor in all species and melatonin formation from serotonin is the same 

two-step process in plants as in animals [191,192,196]. In plants, chloroplasts may be a major site of 

melatonin production [197,198]. 

 

Figure 11. Pathways of melatonin synthesis from tryptophan in animals and plants. The 

first two steps in the pathway, i.e., hydroxylation and decarboxylation, are reversed in 

plants relative to animals. The last two steps are the same. 

The genes for the plant melatonin-synthetic enzymes have also been cloned [199,200]. The 

manipulation of endogenous melatonin synthesis in plants using transgenic technologies is certainly 

feasible and has already been done for two species [129,201]. Genetic modulation of the endogenous 

melatonin pathway in plants for the purpose of enhancing crop production, however, has not been 

accomplished.Sun and colleagues [202] tested melatonin’s effects on post-harvest ripening of Bmei 

cherry tomatoes. The fruits were collected at their green stage of development. After harvesting, they 

were placed in one of several solutions of melatonin (1, 50, 100 or 500 µM) for 2 h. Thereafter, the 

tomatoes were kept at a temperature of 15 °C and 80% relative humidity for 25 days. Melatonin 
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exposure markedly advanced lycopene levels and color development (Figure 12) as well as stimulating 

the expression of several key genes including those of phytoene synthase 1, carotenoid isomerase  

and aquaporins.  

 

Figure 12. Influence of melatonin pigment accumulation in Bmei cherry tomatoes.  

Freshly-picked green tomatoes were insulated in a solution containing 1 µM (M1), 50 µM 

(M50), 100 µM (M100) or 500 µM (M500) melatonin solution for 45 minutes. Thereafter, 

the tomatoes were stored for 25 days. Melatonin hastens lycopene (A) accumulation in a 

concentration-dependent manner; (B) PCR analysis of PSY1 and CRTISO gene expression 

in control (CK) and 50 µM-treated tomatoes; PSY1 and CRTISO are involved in lycopene 

synthesis; (C) Tomatoes treated without melatonin (CK) or with different concentrations of 

melatonin (M50 or M100); see text for details. Bars with different letters (a,b or c) differ 

statistically significantly. From Sun et al. [202] with permission.  

Additionally, melatonin-treated fruits exhibited significantly accelerated fruit softening, elevated 

water soluble pectin and diminished protopectin. These changes were accompanied by upregulation of 

cell wall modifying proteins including polygalacturonase, pectin isomerase 1, β-galactosidase and 

expansion 1. Melatonin also influenced ethylene synthesis, ethylene perception and ethylene signaling. 

Ethylene plays a major role during ripening of tomatoes due to is regulatory actions or carotenoid 

lycopene synthesis, enhancing degradation of the cell wall and converting starch to sugars [203]. It is 

clear from these findings that melatonin hastened the development of color and flavor of the tomato 

fruit via its action on ethylene synthesis in the post-harvest state. Color and flavor are, of course, major 

discernible aspects of fruit quality. These findings are applicable not only to tomato but likely to other 

horticultural products as well. Improving product quality reduces product wastage. 
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10. Plant Melatonin: Rules of Engagement 

In animals, melatonin has an uncanny diversity of means by which it can impact cellular organelles 

and organismal physiology. In vertebrates, membrane melatonin receptors, functioning under the 

monikers MT1 and MT2, have been identified, characterized and cloned [204–206]. These receptors  

are extremely widespread in animals and are accepted as mediating many of the actions of  

melatonin [207–211]. Nuclear receptors (binding sites), although of questionable existence and 

certainly less well defined than the membrane molecules, have also been proposed and may be 

operative in animal cells [212–214]. Additionally, there are cytosolic locations where melatonin may 

link up with other targets [215–219] that result in downstream alterations in cellular physiology. To 

date, none of the receptors (binding sites) referred to above have been identified in plant cells. This 

may not be because they do not exist but, rather, related to the fact that no one has looked for them. 

What is clearly obvious is that, as in animal tissues, melatonin reduces oxidative stress in  

plants. In vertebrates, this protection is a consequence of the direct scavenging actions of  

melatonin [38,55,220–223] and its metabolic kin [56–58,60–62]. The antioxidant actions of melatonin 

in plants very likely stems from some of these same actions. In addition to the direct detoxification of 

reactive oxygen and reactive nitrogen species in animals, melatonin also promotes the activities of 

antioxidative enzymes [111,224] and glutathione production [25,113], a potent antioxidant in its own 

right. These functions of melatonin are believed to involve its interaction with receptors [114,218]. 

Since melatonin has similar functions in plants [173], it portends the existence of some type of receptor 

or binding molecule in these species. It is anticipated these issues will be resolved as research on 

melatonin’s actions in plants continues to evolve. 

11. Concluding Remarks 

Melatonin is a remarkably, heterogeneously-functioning beneficial molecule in plants as in animals. 

Its discovery in land plants two decades ago [32,39] has led to a burgeoning investigative field that has 

already made substantial advances in uncovering the marked actions of this versatile indoleamine. The 

presence of melatonin in plants has implications not only for plant growth and crop yield but also in 

terms of animal and human nutrition. When melatonin-containing plant products are consumed, the 

indoleamine is absorbed after which it performs its functions at the cellular levels. In animals, as in 

plants, melatonin is a highly metabolically useful molecule which neutralizes pathophysiological 

processes that compromise healthy living [25,45,59]. 

Melatonin appears to be no less important in plants. And its actions likely contribute to the 

ecological success of plants and their ability to produce agriproducts. As summarized herein, 

melatonin aids seeds in germinating, improves plant development and maturation of both the root 

system and above ground tissues [132,136,138,144], protects plants from abiotic [110,124,141,145] 

and biotic stresses [149] which, because they are sessile, cannot be avoided. In doing so plants, 

because they contain melatonin, exhibit an increased tolerance to environmental insults and can, in 

fact, acutely improve their defensive posture by upregulating endogenous melatonin production [159,162]. 

One fallout of the improved performance of plants because they possess melatonin is augmented seed 

production. Greater seed availability increases the likelihood of their more widespread dissemination 
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which contributes to the growth of its species in more habitats. Finally, healthier plants have the 

capability of producing a rich yield of edible products which obviously benefits the species that 

consume vegetation for nutrients. 

Beyond this, the potential utility of melatonin-enriched plants as to their phytoremediative capacity 

has yet to be exploited [83,121]. Moreover, melatonin may be found to be useful for the protection or 

preservation of endangered plant species [225]. Of the numerous gaps in the knowledge regarding the 

actions of melatonin in plants, a major one relates to the specific mechanisms by which the indole 

mediates its actions. In animals, melatonin has both receptor-mediated and receptor-independent 

actions [25,26]. The best known melatonin receptors (MT1 and MT2) are located on the membranes of 

cells and many of the signal transduction mechanisms have been defined [204–211]. Yet, no group has 

examined plant cells for the presence of similar receptor proteins. Some intracellular actions of 

melatonin in animal cells also may involve its binding to cytosolic or nuclear molecules [212–217]; 

again, these potential sites have gone uninvestigated in plant cells. 

Non-receptor-mediate actions of melatonin in animal cells are linked to the ability of melatonin and 

its metabolites to function as free radical scavengers and antioxidants [25,26,38,56–62,88]. To date, a 

majority of the functions of melatonin in plant cells have likewise been attributed to the antioxidant 

effects of the indole [102,105,110,115,117,121,130]. Clearly, the mechanisms whereby melatonin 

carries out its multiple functions in plant cells still requires extensive investigative effort. It seems 

obvious from the data summarized herein that melatonin is a highly useful molecule which contributes 

significantly to the hardiness of plants. In doing so, it aids plants to not only survive but, more 

importantly, to thrive. 
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